On the "Illusion" of Gender Bias in Face Recognition: Explaining the Fairness Issue Through Non-demographic Attributes
- URL: http://arxiv.org/abs/2501.12020v1
- Date: Tue, 21 Jan 2025 10:21:19 GMT
- Title: On the "Illusion" of Gender Bias in Face Recognition: Explaining the Fairness Issue Through Non-demographic Attributes
- Authors: Paul Jonas Kurz, Haiyu Wu, Kevin W. Bowyer, Philipp Terhörst,
- Abstract summary: Face recognition systems exhibit significant accuracy differences based on the user's gender.
We propose a toolchain to effectively decorrelate and aggregate facial attributes to enable a less-biased gender analysis.
Experiments show that the gender gap vanishes when images of male and female subjects share specific attributes.
- Score: 7.602456562464879
- License:
- Abstract: Face recognition systems (FRS) exhibit significant accuracy differences based on the user's gender. Since such a gender gap reduces the trustworthiness of FRS, more recent efforts have tried to find the causes. However, these studies make use of manually selected, correlated, and small-sized sets of facial features to support their claims. In this work, we analyse gender bias in face recognition by successfully extending the search domain to decorrelated combinations of 40 non-demographic facial characteristics. First, we propose a toolchain to effectively decorrelate and aggregate facial attributes to enable a less-biased gender analysis on large-scale data. Second, we introduce two new fairness metrics to measure fairness with and without context. Based on these grounds, we thirdly present a novel unsupervised algorithm able to reliably identify attribute combinations that lead to vanishing bias when used as filter predicates for balanced testing datasets. The experiments show that the gender gap vanishes when images of male and female subjects share specific attributes, clearly indicating that the issue is not a question of biology but of the social definition of appearance. These findings could reshape our understanding of fairness in face biometrics and provide insights into FRS, helping to address gender bias issues.
Related papers
- FineFACE: Fair Facial Attribute Classification Leveraging Fine-grained Features [3.9440964696313485]
Research highlights the presence of demographic bias in automated facial attribute classification algorithms.
Existing bias mitigation techniques typically require demographic annotations and often obtain a trade-off between fairness and accuracy.
This paper proposes a novel approach to fair facial attribute classification by framing it as a fine-grained classification problem.
arXiv Detail & Related papers (2024-08-29T20:08:22Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
This paper introduces the GenderBias-emphVL benchmark to evaluate occupation-related gender bias in Large Vision-Language Models.
Using our benchmark, we extensively evaluate 15 commonly used open-source LVLMs and state-of-the-art commercial APIs.
Our findings reveal widespread gender biases in existing LVLMs.
arXiv Detail & Related papers (2024-06-30T05:55:15Z) - Are Face Detection Models Biased? [69.68854430664399]
We investigate possible bias in the domain of face detection through facial region localization.
Most existing face detection datasets lack suitable annotation for such analysis.
We observe a high disparity in detection accuracies across gender and skin-tone, and interplay of confounding factors beyond demography.
arXiv Detail & Related papers (2022-11-07T14:27:55Z) - Mitigating Gender Bias in Face Recognition Using the von Mises-Fisher
Mixture Model [7.049738935364298]
In this work, we investigate the gender bias of deep Face Recognition networks.
Motivated by geometric considerations, we mitigate gender bias through a new post-processing methodology.
In fact, extensive numerical experiments on a variety of datasets show that a careful selection significantly reduces gender bias.
arXiv Detail & Related papers (2022-10-24T23:53:56Z) - Gender Stereotyping Impact in Facial Expression Recognition [1.5340540198612824]
In recent years, machine learning-based models have become the most popular approach to Facial Expression Recognition (FER)
In publicly available FER datasets, apparent gender representation is usually mostly balanced, but their representation in the individual label is not.
We generate derivative datasets with different amounts of stereotypical bias by altering the gender proportions of certain labels.
We observe a discrepancy in the recognition of certain emotions between genders of up to $29 %$ under the worst bias conditions.
arXiv Detail & Related papers (2022-10-11T10:52:23Z) - The Gender Gap in Face Recognition Accuracy Is a Hairy Problem [8.768049933358968]
We first demonstrate that female and male hairstyles have important differences that impact face recognition accuracy.
We then demonstrate that when the data used to estimate recognition accuracy is balanced across gender for how hairstyles occlude the face, the initially observed gender gap in accuracy largely disappears.
arXiv Detail & Related papers (2022-06-10T04:32:47Z) - Anatomizing Bias in Facial Analysis [86.79402670904338]
Existing facial analysis systems have been shown to yield biased results against certain demographic subgroups.
It has become imperative to ensure that these systems do not discriminate based on gender, identity, or skin tone of individuals.
This has led to research in the identification and mitigation of bias in AI systems.
arXiv Detail & Related papers (2021-12-13T09:51:13Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
There are demographic biases present in current facial recognition (FR) models.
We introduce our Balanced Faces in the Wild dataset to measure these biases across different ethnic and gender subgroups.
We find that relying on a single score threshold to differentiate between genuine and imposters sample pairs leads to suboptimal results.
We propose a novel domain adaptation learning scheme that uses facial features extracted from state-of-the-art neural networks.
arXiv Detail & Related papers (2021-03-16T15:05:49Z) - Mitigating Gender Bias in Captioning Systems [56.25457065032423]
Most captioning models learn gender bias, leading to high gender prediction errors, especially for women.
We propose a new Guided Attention Image Captioning model (GAIC) which provides self-guidance on visual attention to encourage the model to capture correct gender visual evidence.
arXiv Detail & Related papers (2020-06-15T12:16:19Z) - Towards Gender-Neutral Face Descriptors for Mitigating Bias in Face
Recognition [51.856693288834975]
State-of-the-art deep networks implicitly encode gender information while being trained for face recognition.
Gender is often viewed as an important attribute with respect to identifying faces.
We present a novel Adversarial Gender De-biasing algorithm (AGENDA)' to reduce the gender information present in face descriptors.
arXiv Detail & Related papers (2020-06-14T08:54:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.