Floquet engineering of point-gapped topological superconductors
- URL: http://arxiv.org/abs/2501.12129v1
- Date: Tue, 21 Jan 2025 13:43:16 GMT
- Title: Floquet engineering of point-gapped topological superconductors
- Authors: Xiang Ji, Hao Geng, Naeem Akhtar, Xiaosen Yang,
- Abstract summary: We present the Floquet engineering approach for realizing point-gapped topological superconductors.
We show that a point gap hosting robust Majorana edge modes emerges at the overlap of Floquet bands with opposite winding numbers.
Our work offers a new pathway for exploring the point-gapped topological phases in non-Hermitian systems.
- Score: 7.1952692603977795
- License:
- Abstract: Non-Hermitian systems exhibit two distinct topological classifications based on their gap structure: line-gap and point-gap topologies. Although point-gap topology is intrinsic to non-Hermitian systems, its systematic construction remains a challenge. Here, we present the Floquet engineering approach for realizing point-gapped topological superconductors. By combining Floquet theory with particle-hole symmetry (PHS), we show that a point gap hosting robust Majorana edge modes emerges at the overlap of Floquet bands with opposite winding numbers. In the thermodynamic limit, even weak non-Hermiticity opens a point gap from a gapless spectrum, driving a topological phase transition and breaking non-Bloch parity-time ($\mathcal{PT}$) symmetry. This transition is accompanied by the appearance of the Floquet $Z_2$ skin effect. Furthermore, the point-gapped topological phase and the non-Bloch $\mathcal{PT}$ symmetry exhibit size-dependent phenomena driven by the critical skin effect. Our work offers a new pathway for exploring the point-gapped topological phases in non-Hermitian systems.
Related papers
- Gapless higher-order topology and corner states in Floquet systems [3.40981020092183]
We analytically characterize and numerically demonstrate the zero and $pi$ corner modes that could emerge at the critical points between different Floquet HOTPs.
Our work reveals the possibility of corner modes surviving topological transitions in Floquet systems.
arXiv Detail & Related papers (2025-01-14T14:45:07Z) - Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Quantum geometry and geometric entanglement entropy of one-dimensional Floquet topological matter [0.0]
We reveal the quantum geometry and the associated entanglement entropy of Floquet topological states in one-dimensional periodically driven systems.
The quantum metric tensors of Floquet states are found to show non-analytic signatures at topological phase transition points.
Our findings uncover the rich quantum geometries of Floquet states, unveiling the geometric origin of EE for gapped Floquet topological phases.
arXiv Detail & Related papers (2024-08-10T11:44:06Z) - Many-body origin of anomalous Floquet phases in cavity-QED materials [0.0]
Anomalous Floquet topological phases are a hallmark, without a static analog, of periodically driven systems.
Quantum Floquet Engineering has emerged as an interesting approach to cavity-QED materials.
arXiv Detail & Related papers (2023-12-15T19:00:05Z) - Dissipative preparation of a Floquet topological insulator in an optical lattice via bath engineering [44.99833362998488]
Floquet engineering is an important tool for realizing charge-neutral atoms in optical lattices.
We show that a driven-dissipative system approximates a topological insulator.
arXiv Detail & Related papers (2023-07-07T17:47:50Z) - Symmetry and topological classification of Floquet non-Hermitian systems [2.5897520593396495]
Floquet and non-Hermitian topological phases can be epitomized by the various Floquet and non-Hermitian phases.
We systematically classify FNH topological bands for 54-fold generalized Bernard-LeClair (GBL)symmetry classes and arbitrary spatial dimensions.
Our results naturally produce the periodic tables of Floquet Hermitian topological insulators and Floquet unitaries.
arXiv Detail & Related papers (2021-12-13T14:55:39Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Dual topological characterization of non-Hermitian Floquet phases [0.0]
We introduce a dual scheme to characterize the topology of non-Hermitian Floquet systems in momentum space and in real space.
Our results indicate that a dual characterization of non-Hermitian Floquet topological matter is necessary and also feasible.
arXiv Detail & Related papers (2020-09-28T05:01:28Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.