High-dimensional multimodal uncertainty estimation by manifold alignment:Application to 3D right ventricular strain computations
- URL: http://arxiv.org/abs/2501.12178v1
- Date: Tue, 21 Jan 2025 14:35:35 GMT
- Title: High-dimensional multimodal uncertainty estimation by manifold alignment:Application to 3D right ventricular strain computations
- Authors: Maxime Di Folco, Gabriel Bernardino, Patrick Clarysse, Nicolas Duchateau,
- Abstract summary: We propose a representation learning strategy to estimate local uncertainties on a physiological descriptor.
We first use manifold alignment to match the latent representations associated to different high-dimensional input descriptors.
Then, we formulate plausible distributions of latent uncertainties, and finally exploit them to reconstruct uncertainties on the input high-dimensional descriptors.
- Score: 1.254652786049077
- License:
- Abstract: Confidence in the results is a key ingredient to improve the adoption of machine learning methods by clinicians. Uncertainties on the results have been considered in the literature, but mostly those originating from the learning and processing methods. Uncertainty on the data is hardly challenged, as a single sample is often considered representative enough of each subject included in the analysis. In this paper, we propose a representation learning strategy to estimate local uncertainties on a physiological descriptor (here, myocardial deformation) previously obtained from medical images by different definitions or computations. We first use manifold alignment to match the latent representations associated to different high-dimensional input descriptors. Then, we formulate plausible distributions of latent uncertainties, and finally exploit them to reconstruct uncertainties on the input high-dimensional descriptors. We demonstrate its relevance for the quantification of myocardial deformation (strain) from 3D echocardiographic image sequences of the right ventricle, for which a lack of consensus exists in its definition and which directional component to use. We used a database of 100 control subjects with right ventricle overload, for which different types of strain are available at each point of the right ventricle endocardial surface mesh. Our approach quantifies local uncertainties on myocardial deformation from different descriptors defining this physiological concept. Such uncertainties cannot be directly estimated by local statistics on such descriptors, potentially of heterogeneous types. Beyond this controlled illustrative application, our methodology has the potential to be generalized to many other population analyses considering heterogeneous high-dimensional descriptors.
Related papers
- Robust Conformal Volume Estimation in 3D Medical Images [0.5799785223420274]
Volumetry is one of the principal downstream applications of 3D medical image segmentation.
We propose an efficient approach for density ratio estimation relying on the compressed latent representations generated by the segmentation model.
arXiv Detail & Related papers (2024-07-29T12:18:07Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
Left ventricular (LV) volume estimation is critical for valid diagnosis and management of various cardiovascular conditions.
Recent machine learning advancements, particularly U-Net-like convolutional networks, have facilitated automated segmentation for medical images.
This study proposes a novel methodology for post-hoc uncertainty estimation in LV volume prediction.
arXiv Detail & Related papers (2023-10-30T13:44:55Z) - DCID: Deep Canonical Information Decomposition [84.59396326810085]
We consider the problem of identifying the signal shared between two one-dimensional target variables.
We propose ICM, an evaluation metric which can be used in the presence of ground-truth labels.
We also propose Deep Canonical Information Decomposition (DCID) - a simple, yet effective approach for learning the shared variables.
arXiv Detail & Related papers (2023-06-27T16:59:06Z) - Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
We prove strong identifiability results given unknown single-node interventions without access to the intervention targets.
This is the first instance of causal identifiability from non-paired interventions for deep neural network embeddings.
arXiv Detail & Related papers (2023-06-04T02:32:12Z) - CRISP - Reliable Uncertainty Estimation for Medical Image Segmentation [6.197149831796131]
We propose CRISP a ContRastive Image for uncertainty Prediction method.
At its core, CRISP implements a contrastive method to learn a joint latent space which encodes a distribution of valid segmentations.
We use this joint latent space to compare predictions to thousands of latent vectors and provide anatomically consistent uncertainty maps.
arXiv Detail & Related papers (2022-06-15T16:56:58Z) - From Images to Probabilistic Anatomical Shapes: A Deep Variational
Bottleneck Approach [0.0]
Statistical shape modeling (SSM) directly from 3D medical images is an underutilized tool for detecting pathology, diagnosing disease, and conducting population-level morphology analysis.
In this paper, we propose a principled framework based on the variational information bottleneck theory to relax these assumptions.
Our experiments demonstrate that the proposed method provides improved accuracy and better calibrated aleatoric uncertainty estimates.
arXiv Detail & Related papers (2022-05-13T19:39:08Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Quantifying and Leveraging Predictive Uncertainty for Medical Image
Assessment [13.330243305948278]
We propose a system that learns not only the probabilistic estimate for classification, but also an explicit uncertainty measure.
We argue that this approach is essential to account for the inherent ambiguity characteristic of medical images from different radiologic exams.
In our experiments we demonstrate that sample rejection based on the predicted uncertainty can significantly improve the ROC-AUC for various tasks.
arXiv Detail & Related papers (2020-07-08T16:47:55Z) - Manifolds for Unsupervised Visual Anomaly Detection [79.22051549519989]
Unsupervised learning methods that don't necessarily encounter anomalies in training would be immensely useful.
We develop a novel hyperspherical Variational Auto-Encoder (VAE) via stereographic projections with a gyroplane layer.
We present state-of-the-art results on visual anomaly benchmarks in precision manufacturing and inspection, demonstrating real-world utility in industrial AI scenarios.
arXiv Detail & Related papers (2020-06-19T20:41:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.