Fixing Imbalanced Attention to Mitigate In-Context Hallucination of Large Vision-Language Model
- URL: http://arxiv.org/abs/2501.12206v1
- Date: Tue, 21 Jan 2025 15:22:31 GMT
- Title: Fixing Imbalanced Attention to Mitigate In-Context Hallucination of Large Vision-Language Model
- Authors: Kazi Hasan Ibn Arif, Sajib Acharjee Dip, Khizar Hussain, Lang Zhang, Chris Thomas,
- Abstract summary: Large Vision Language Models (LVLMs) have demonstrated remarkable capabilities in understanding and describing visual content.
These models frequently exhibit hallucination behavior, where they generate descriptions containing objects or details absent in the input image.
We propose a novel attention modification approach that combines selective token emphasis and head-specific modulation to maintain visual grounding.
- Score: 0.0
- License:
- Abstract: Large Vision Language Models (LVLMs) have demonstrated remarkable capabilities in understanding and describing visual content, achieving state-of-the-art performance across various vision-language tasks. However, these models frequently exhibit hallucination behavior, where they generate descriptions containing objects or details absent in the input image. Our work investigates this phenomenon by analyzing attention patterns across transformer layers and heads, revealing that hallucinations often stem from progressive degradation of visual grounding in deeper layers. We propose a novel attention modification approach that combines selective token emphasis and head-specific modulation to maintain visual grounding throughout the generation process. Our method introduces two key components: (1) a dual-stream token selection mechanism that identifies and prioritizes both locally informative and spatially significant visual tokens, and (2) an attention head-specific modulation strategy that differentially amplifies visual information processing based on measured visual sensitivity of individual attention heads. Through extensive experimentation on the MSCOCO dataset, we demonstrate that our approach reduces hallucination rates by up to 62.3\% compared to baseline models while maintaining comparable task performance. Our analysis reveals that selectively modulating tokens across attention heads with varying levels of visual sensitivity can significantly improve visual grounding without requiring model retraining.
Related papers
- The Hidden Life of Tokens: Reducing Hallucination of Large Vision-Language Models via Visual Information Steering [42.09744951074433]
We investigate the internal dynamics of hallucination by examining the tokens logits rankings throughout the generation process.
We propose VISTA, a training-free inference-time intervention framework that reduces hallucination while promoting genuine information.
arXiv Detail & Related papers (2025-02-05T21:34:02Z) - Cracking the Code of Hallucination in LVLMs with Vision-aware Head Divergence [69.86946427928511]
We investigate the internal mechanisms driving hallucination in large vision-language models (LVLMs)
We introduce Vision-aware Head Divergence (VHD), a metric that quantifies the sensitivity of attention head outputs to visual context.
We propose Vision-aware Head Reinforcement (VHR), a training-free approach to mitigate hallucination by enhancing the role of vision-aware attention heads.
arXiv Detail & Related papers (2024-12-18T15:29:30Z) - VaLiD: Mitigating the Hallucination of Large Vision Language Models by Visual Layer Fusion Contrastive Decoding [38.23310445372371]
Large Vision-Language Models (LVLMs) have demonstrated outstanding performance in multimodal task reasoning.
We propose a novel hallucination-mitigation method from the visual encoding perspective: textbfVisutextbfal textbfLayer Fustextbfion Contrastive textbfDecoding (VaLiD)
arXiv Detail & Related papers (2024-11-24T13:42:02Z) - Devils in Middle Layers of Large Vision-Language Models: Interpreting, Detecting and Mitigating Object Hallucinations via Attention Lens [7.806633929976787]
Hallucinations in Large Vision-Language Models (LVLMs) significantly undermine their reliability.
This paper addresses how LVLMs process visual information and whether this process causes hallucination.
We propose a simple inference-time method that adjusts visual attention by integrating information across various heads.
arXiv Detail & Related papers (2024-11-23T03:40:05Z) - Explore the Hallucination on Low-level Perception for MLLMs [83.12180878559295]
We aim to define and evaluate the self-awareness of MLLMs in low-level visual perception and understanding tasks.
We present QL-Bench, a benchmark settings to simulate human responses to low-level vision.
We demonstrate that while some models exhibit robust low-level visual capabilities, their self-awareness remains relatively underdeveloped.
arXiv Detail & Related papers (2024-09-15T14:38:29Z) - Dual-Image Enhanced CLIP for Zero-Shot Anomaly Detection [58.228940066769596]
We introduce a Dual-Image Enhanced CLIP approach, leveraging a joint vision-language scoring system.
Our methods process pairs of images, utilizing each as a visual reference for the other, thereby enriching the inference process with visual context.
Our approach significantly exploits the potential of vision-language joint anomaly detection and demonstrates comparable performance with current SOTA methods across various datasets.
arXiv Detail & Related papers (2024-05-08T03:13:20Z) - Egocentric Audio-Visual Object Localization [51.434212424829525]
We propose a geometry-aware temporal aggregation module to handle the egomotion explicitly.
The effect of egomotion is mitigated by estimating the temporal geometry transformation and exploiting it to update visual representations.
It improves cross-modal localization robustness by disentangling visually-indicated audio representation.
arXiv Detail & Related papers (2023-03-23T17:43:11Z) - Plausible May Not Be Faithful: Probing Object Hallucination in
Vision-Language Pre-training [66.0036211069513]
Large-scale vision-language pre-trained models are prone to hallucinate non-existent visual objects when generating text.
We show that models achieving better scores on standard metrics could hallucinate objects more frequently.
Surprisingly, we find that patch-based features perform the best and smaller patch resolution yields a non-trivial reduction in object hallucination.
arXiv Detail & Related papers (2022-10-14T10:27:22Z) - Visual Perturbation-aware Collaborative Learning for Overcoming the
Language Prior Problem [60.0878532426877]
We propose a novel collaborative learning scheme from the viewpoint of visual perturbation calibration.
Specifically, we devise a visual controller to construct two sorts of curated images with different perturbation extents.
The experimental results on two diagnostic VQA-CP benchmark datasets evidently demonstrate its effectiveness.
arXiv Detail & Related papers (2022-07-24T23:50:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.