Quantitative Error Bounds for Scaling Limits of Stochastic Iterative Algorithms
- URL: http://arxiv.org/abs/2501.12212v1
- Date: Tue, 21 Jan 2025 15:29:11 GMT
- Title: Quantitative Error Bounds for Scaling Limits of Stochastic Iterative Algorithms
- Authors: Xiaoyu Wang, Mikolaj J. Kasprzak, Jeffrey Negrea, Solesne Bourguin, Jonathan H. Huggins,
- Abstract summary: We derive non-asymptotic functional approximation error bounds between the algorithm sample paths and the Ornstein-Uhlenbeck approximation.
We use our main result to construct error bounds in terms of two common metrics: the L'evy-Prokhorov and bounded Wasserstein distances.
- Score: 10.022615790746466
- License:
- Abstract: Stochastic iterative algorithms, including stochastic gradient descent (SGD) and stochastic gradient Langevin dynamics (SGLD), are widely utilized for optimization and sampling in large-scale and high-dimensional problems in machine learning, statistics, and engineering. Numerous works have bounded the parameter error in, and characterized the uncertainty of, these approximations. One common approach has been to use scaling limit analyses to relate the distribution of algorithm sample paths to a continuous-time stochastic process approximation, particularly in asymptotic setups. Focusing on the univariate setting, in this paper, we build on previous work to derive non-asymptotic functional approximation error bounds between the algorithm sample paths and the Ornstein-Uhlenbeck approximation using an infinite-dimensional version of Stein's method of exchangeable pairs. We show that this bound implies weak convergence under modest additional assumptions and leads to a bound on the error of the variance of the iterate averages of the algorithm. Furthermore, we use our main result to construct error bounds in terms of two common metrics: the L\'{e}vy-Prokhorov and bounded Wasserstein distances. Our results provide a foundation for developing similar error bounds for the multivariate setting and for more sophisticated stochastic approximation algorithms.
Related papers
- Pathwise optimization for bridge-type estimators and its applications [49.1574468325115]
Pathwise methods allow to efficiently compute the full path for penalized estimators.
We apply these algorithms to the penalized estimation of processes observed at discrete times.
arXiv Detail & Related papers (2024-12-05T10:38:29Z) - Variance reduction techniques for stochastic proximal point algorithms [5.374800961359305]
In this work, we propose the first unified study of variance reduction techniques for proximal point algorithms.
We introduce a generic proximal-based algorithm that can be specified to give the proximal version of SVRG, SAGA, and some of their variants.
Our experiments demonstrate the advantages of the proximal variance reduction methods over their gradient counterparts.
arXiv Detail & Related papers (2023-08-18T05:11:50Z) - Variational sparse inverse Cholesky approximation for latent Gaussian
processes via double Kullback-Leibler minimization [6.012173616364571]
We combine a variational approximation of the posterior with a similar and efficient SIC-restricted Kullback-Leibler-optimal approximation of the prior.
For this setting, our variational approximation can be computed via gradient descent in polylogarithmic time per iteration.
We provide numerical comparisons showing that the proposed double-Kullback-Leibler-optimal Gaussian-process approximation (DKLGP) can sometimes be vastly more accurate for stationary kernels than alternative approaches.
arXiv Detail & Related papers (2023-01-30T21:50:08Z) - Exponential Concentration in Stochastic Approximation [0.8192907805418583]
We analyze the behavior of approximation algorithms where iterates, in expectation, progress towards an objective at each step.
We apply our results to several different Markov Approximation algorithms, specifically Projected Gradient Descent, Kiefer-Wolfowitz and Frank-Wolfe algorithms.
arXiv Detail & Related papers (2022-08-15T14:57:26Z) - Stochastic Approximation with Decision-Dependent Distributions: Asymptotic Normality and Optimality [8.771678221101368]
We analyze an approximation for decision-dependent problems, wherein the data distribution used by the algorithm evolves along the iterate sequence.
We show that under mild assumptions, the deviation between the iterate of the algorithm and its solution isally normal.
We also show that the performance of the algorithm with averaging is locally minimax optimal.
arXiv Detail & Related papers (2022-07-09T01:44:17Z) - Posterior and Computational Uncertainty in Gaussian Processes [52.26904059556759]
Gaussian processes scale prohibitively with the size of the dataset.
Many approximation methods have been developed, which inevitably introduce approximation error.
This additional source of uncertainty, due to limited computation, is entirely ignored when using the approximate posterior.
We develop a new class of methods that provides consistent estimation of the combined uncertainty arising from both the finite number of data observed and the finite amount of computation expended.
arXiv Detail & Related papers (2022-05-30T22:16:25Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Non-asymptotic bounds for stochastic optimization with biased noisy
gradient oracles [8.655294504286635]
We introduce biased gradient oracles to capture a setting where the function measurements have an estimation error.
Our proposed oracles are in practical contexts, for instance, risk measure estimation from a batch of independent and identically distributed simulation.
arXiv Detail & Related papers (2020-02-26T12:53:04Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.