A Hybrid Supervised and Self-Supervised Graph Neural Network for Edge-Centric Applications
- URL: http://arxiv.org/abs/2501.12309v1
- Date: Tue, 21 Jan 2025 17:26:15 GMT
- Title: A Hybrid Supervised and Self-Supervised Graph Neural Network for Edge-Centric Applications
- Authors: Eugenio Borzone, Leandro Di Persia, Matias Gerard,
- Abstract summary: This paper presents a novel graph-based deep learning model for tasks involving relations between two nodes (edge-centric tasks)
The model combines supervised and self-supervised learning, taking into account for the loss function the embeddings learned and patterns with and without ground truth.
Experiments demonstrate that our model matches or exceeds existing methods for protein-protein interactions prediction and Gene Ontology (GO) terms prediction.
- Score: 0.0
- License:
- Abstract: This paper presents a novel graph-based deep learning model for tasks involving relations between two nodes (edge-centric tasks), where the focus lies on predicting relationships and interactions between pairs of nodes rather than node properties themselves. This model combines supervised and self-supervised learning, taking into account for the loss function the embeddings learned and patterns with and without ground truth. Additionally it incorporates an attention mechanism that leverages both node and edge features. The architecture, trained end-to-end, comprises two primary components: embedding generation and prediction. First, a graph neural network (GNN) transform raw node features into dense, low-dimensional embeddings, incorporating edge attributes. Then, a feedforward neural model processes the node embeddings to produce the final output. Experiments demonstrate that our model matches or exceeds existing methods for protein-protein interactions prediction and Gene Ontology (GO) terms prediction. The model also performs effectively with one-hot encoding for node features, providing a solution for the previously unsolved problem of predicting similarity between compounds with unknown structures.
Related papers
- A parameterised model for link prediction using node centrality and
similarity measure based on graph embedding [5.507008181141738]
Link prediction is a key aspect of graph machine learning.
It involves predicting new links that may form between network nodes.
Existing models have significant shortcomings.
We present the Node Centrality and Similarity Based.
Model (NCSM), a novel method for link prediction tasks.
arXiv Detail & Related papers (2023-09-11T13:13:54Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - Structure-aware Interactive Graph Neural Networks for the Prediction of
Protein-Ligand Binding Affinity [52.67037774136973]
Drug discovery often relies on the successful prediction of protein-ligand binding affinity.
Recent advances have shown great promise in applying graph neural networks (GNNs) for better affinity prediction by learning the representations of protein-ligand complexes.
We propose a structure-aware interactive graph neural network (SIGN) which consists of two components: polar-inspired graph attention layers (PGAL) and pairwise interactive pooling (PiPool)
arXiv Detail & Related papers (2021-07-21T03:34:09Z) - CatGCN: Graph Convolutional Networks with Categorical Node Features [99.555850712725]
CatGCN is tailored for graph learning when the node features are categorical.
We train CatGCN in an end-to-end fashion and demonstrate it on semi-supervised node classification.
arXiv Detail & Related papers (2020-09-11T09:25:17Z) - Self-supervised edge features for improved Graph Neural Network training [8.980876474818153]
We present a framework for creating new edge features, applicable to any domain, via a combination of self-supervised and unsupervised learning.
We validate our work on three biological datasets comprising of single-cell RNA sequencing data of neurological disease, textitin vitro SARS-CoV-2 infection, and human COVID-19 patients.
arXiv Detail & Related papers (2020-06-23T20:18:22Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.