Continuous 3D Perception Model with Persistent State
- URL: http://arxiv.org/abs/2501.12387v1
- Date: Tue, 21 Jan 2025 18:59:23 GMT
- Title: Continuous 3D Perception Model with Persistent State
- Authors: Qianqian Wang, Yifei Zhang, Aleksander Holynski, Alexei A. Efros, Angjoo Kanazawa,
- Abstract summary: We present a unified framework capable of solving a broad range of 3D tasks.
Our approach features a stateful recurrent model that continuously updates its state representation with each new observation.
We evaluate our method on various 3D/4D tasks and demonstrate competitive or state-of-the-art performance in each.
- Score: 111.83854602049222
- License:
- Abstract: We present a unified framework capable of solving a broad range of 3D tasks. Our approach features a stateful recurrent model that continuously updates its state representation with each new observation. Given a stream of images, this evolving state can be used to generate metric-scale pointmaps (per-pixel 3D points) for each new input in an online fashion. These pointmaps reside within a common coordinate system, and can be accumulated into a coherent, dense scene reconstruction that updates as new images arrive. Our model, called CUT3R (Continuous Updating Transformer for 3D Reconstruction), captures rich priors of real-world scenes: not only can it predict accurate pointmaps from image observations, but it can also infer unseen regions of the scene by probing at virtual, unobserved views. Our method is simple yet highly flexible, naturally accepting varying lengths of images that may be either video streams or unordered photo collections, containing both static and dynamic content. We evaluate our method on various 3D/4D tasks and demonstrate competitive or state-of-the-art performance in each. Project Page: https://cut3r.github.io/
Related papers
- 3D-SceneDreamer: Text-Driven 3D-Consistent Scene Generation [51.64796781728106]
We propose a generative refinement network to synthesize new contents with higher quality by exploiting the natural image prior to 2D diffusion model and the global 3D information of the current scene.
Our approach supports wide variety of scene generation and arbitrary camera trajectories with improved visual quality and 3D consistency.
arXiv Detail & Related papers (2024-03-14T14:31:22Z) - SACReg: Scene-Agnostic Coordinate Regression for Visual Localization [16.866303169903237]
We propose a generalized SCR model trained once in new test scenes, regardless of their scale, without any finetuning.
Instead of encoding the scene coordinates into the network weights, our model takes as input a database image with some sparse 2D pixel to 3D coordinate annotations.
We show that the database representation of images and their 2D-3D annotations can be highly compressed with negligible loss of localization performance.
arXiv Detail & Related papers (2023-07-21T16:56:36Z) - SGAligner : 3D Scene Alignment with Scene Graphs [84.01002998166145]
Building 3D scene graphs has emerged as a topic in scene representation for several embodied AI applications.
We focus on the fundamental problem of aligning pairs of 3D scene graphs whose overlap can range from zero to partial.
We propose SGAligner, the first method for aligning pairs of 3D scene graphs that is robust to in-the-wild scenarios.
arXiv Detail & Related papers (2023-04-28T14:39:22Z) - Visual Localization using Imperfect 3D Models from the Internet [54.731309449883284]
This paper studies how imperfections in 3D models affect localization accuracy.
We show that 3D models from the Internet show promise as an easy-to-obtain scene representation.
arXiv Detail & Related papers (2023-04-12T16:15:05Z) - Persistent Nature: A Generative Model of Unbounded 3D Worlds [74.51149070418002]
We present an extendable, planar scene layout grid that can be rendered from arbitrary camera poses via a 3D decoder and volume rendering.
Based on this representation, we learn a generative world model solely from single-view internet photos.
Our approach enables scene extrapolation beyond the fixed bounds of current 3D generative models, while also supporting a persistent, camera-independent world representation.
arXiv Detail & Related papers (2023-03-23T17:59:40Z) - Vision Transformer for NeRF-Based View Synthesis from a Single Input
Image [49.956005709863355]
We propose to leverage both the global and local features to form an expressive 3D representation.
To synthesize a novel view, we train a multilayer perceptron (MLP) network conditioned on the learned 3D representation to perform volume rendering.
Our method can render novel views from only a single input image and generalize across multiple object categories using a single model.
arXiv Detail & Related papers (2022-07-12T17:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.