A Unified Invariant Learning Framework for Graph Classification
- URL: http://arxiv.org/abs/2501.12595v1
- Date: Wed, 22 Jan 2025 02:45:21 GMT
- Title: A Unified Invariant Learning Framework for Graph Classification
- Authors: Yongduo Sui, Jie Sun, Shuyao Wang, Zemin Liu, Qing Cui, Longfei Li, Xiang Wang,
- Abstract summary: Invariant learning aims to recognize stable features in graph data for classification.
We introduce the Unified Invariant Learning framework for graph classification.
We present both theoretical and empirical evidence to confirm our method's ability to recognize superior stable features.
- Score: 25.35939628738617
- License:
- Abstract: Invariant learning demonstrates substantial potential for enhancing the generalization of graph neural networks (GNNs) with out-of-distribution (OOD) data. It aims to recognize stable features in graph data for classification, based on the premise that these features causally determine the target label, and their influence is invariant to changes in distribution. Along this line, most studies have attempted to pinpoint these stable features by emphasizing explicit substructures in the graph, such as masked or attentive subgraphs, and primarily enforcing the invariance principle in the semantic space, i.e., graph representations. However, we argue that focusing only on the semantic space may not accurately identify these stable features. To address this, we introduce the Unified Invariant Learning (UIL) framework for graph classification. It provides a unified perspective on invariant graph learning, emphasizing both structural and semantic invariance principles to identify more robust stable features. In the graph space, UIL adheres to the structural invariance principle by reducing the distance between graphons over a set of stable features across different environments. Simultaneously, to confirm semantic invariance, UIL underscores that the acquired graph representations should demonstrate exemplary performance across diverse environments. We present both theoretical and empirical evidence to confirm our method's ability to recognize superior stable features. Moreover, through a series of comprehensive experiments complemented by in-depth analyses, we demonstrate that UIL considerably enhances OOD generalization, surpassing the performance of leading baseline methods. Our codes are available at https://github.com/yongduosui/UIL.
Related papers
- Mitigating Graph Covariate Shift via Score-based Out-of-distribution Augmentation [16.59129444793973]
Distribution shifts between training and testing datasets significantly impair the model performance on graph learning.
We introduce a novel approach using score-based graph generation strategies that synthesize unseen environmental features while preserving the validity and stable features of overall graph patterns.
arXiv Detail & Related papers (2024-10-23T02:09:02Z) - Topology-Aware Dynamic Reweighting for Distribution Shifts on Graph [24.44321658238713]
Graph Neural Networks (GNNs) are widely used for node classification tasks but often fail to generalize when training and test nodes come from different distributions.
We introduce the Topology-Aware Dynamic Reweighting (TAR) framework, which dynamically adjusts sample weights through gradient flow in the Wasserstein space during training.
Our framework's superiority is demonstrated through standard testing on four graph OOD datasets and three class-imbalanced node classification datasets.
arXiv Detail & Related papers (2024-06-03T07:32:05Z) - ALEX: Towards Effective Graph Transfer Learning with Noisy Labels [11.115297917940829]
We introduce a novel technique termed Balance Alignment and Information-aware Examination (ALEX) to address the problem of graph transfer learning.
ALEX first employs singular value decomposition to generate different views with crucial structural semantics, which help provide robust node representations.
Building on this foundation, an adversarial domain discriminator is incorporated for the implicit domain alignment of complex multi-modal distributions.
arXiv Detail & Related papers (2023-09-26T04:59:49Z) - Evaluating Robustness and Uncertainty of Graph Models Under Structural
Distributional Shifts [43.40315460712298]
In node-level problems of graph learning, distributional shifts can be especially complex.
We propose a general approach for inducing diverse distributional shifts based on graph structure.
We show that simple models often outperform more sophisticated methods on the considered structural shifts.
arXiv Detail & Related papers (2023-02-27T15:25:21Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - Unleashing the Power of Graph Data Augmentation on Covariate
Distribution Shift [50.98086766507025]
We propose a simple-yet-effective data augmentation strategy, Adversarial Invariant Augmentation (AIA)
AIA aims to extrapolate and generate new environments, while concurrently preserving the original stable features during the augmentation process.
arXiv Detail & Related papers (2022-11-05T07:55:55Z) - Counterfactual Intervention Feature Transfer for Visible-Infrared Person
Re-identification [69.45543438974963]
We find graph-based methods in the visible-infrared person re-identification task (VI-ReID) suffer from bad generalization because of two issues.
The well-trained input features weaken the learning of graph topology, making it not generalized enough during the inference process.
We propose a Counterfactual Intervention Feature Transfer (CIFT) method to tackle these problems.
arXiv Detail & Related papers (2022-08-01T16:15:31Z) - Invariance Principle Meets Out-of-Distribution Generalization on Graphs [66.04137805277632]
Complex nature of graphs thwarts the adoption of the invariance principle for OOD generalization.
domain or environment partitions, which are often required by OOD methods, can be expensive to obtain for graphs.
We propose a novel framework to explicitly model this process using a contrastive strategy.
arXiv Detail & Related papers (2022-02-11T04:38:39Z) - Graph Structure Learning with Variational Information Bottleneck [70.62851953251253]
We propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL.
VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks.
arXiv Detail & Related papers (2021-12-16T14:22:13Z) - Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational
Inference [48.63194907060615]
We build off of semi-implicit graph variational auto-encoders to capture higher-order statistics in a low-dimensional graph latent representation.
We incorporate hyperbolic geometry in the latent space through a Poincare embedding to efficiently represent graphs exhibiting hierarchical structure.
arXiv Detail & Related papers (2020-10-31T05:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.