Image Motion Blur Removal in the Temporal Dimension with Video Diffusion Models
- URL: http://arxiv.org/abs/2501.12604v1
- Date: Wed, 22 Jan 2025 03:01:54 GMT
- Title: Image Motion Blur Removal in the Temporal Dimension with Video Diffusion Models
- Authors: Wang Pang, Zhihao Zhan, Xiang Zhu, Yechao Bai,
- Abstract summary: We propose a novel single-image deblurring approach that treats motion blur as a temporal averaging phenomenon.<n>Our core innovation lies in leveraging a pre-trained video diffusion transformer model to capture diverse motion dynamics.<n> Empirical results on synthetic and real-world datasets demonstrate that our method outperforms existing techniques in deblurring complex motion blur scenarios.
- Score: 3.052019331122618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most motion deblurring algorithms rely on spatial-domain convolution models, which struggle with the complex, non-linear blur arising from camera shake and object motion. In contrast, we propose a novel single-image deblurring approach that treats motion blur as a temporal averaging phenomenon. Our core innovation lies in leveraging a pre-trained video diffusion transformer model to capture diverse motion dynamics within a latent space. It sidesteps explicit kernel estimation and effectively accommodates diverse motion patterns. We implement the algorithm within a diffusion-based inverse problem framework. Empirical results on synthetic and real-world datasets demonstrate that our method outperforms existing techniques in deblurring complex motion blur scenarios. This work paves the way for utilizing powerful video diffusion models to address single-image deblurring challenges.
Related papers
- LightMotion: A Light and Tuning-free Method for Simulating Camera Motion in Video Generation [56.64004196498026]
LightMotion is a light and tuning-free method for simulating camera motion in video generation.
operating in the latent space, it eliminates additional fine-tuning, inpainting, and depth estimation.
arXiv Detail & Related papers (2025-03-09T08:28:40Z) - Video Super-Resolution: All You Need is a Video Diffusion Model [3.052019331122618]
We present a generic video super-resolution algorithm based on the Diffusion Posterior Sampling framework.
We argue that a powerful model, which learns the physics of the real world, can easily handle various kinds of motion patterns as prior knowledge.
arXiv Detail & Related papers (2025-03-05T10:37:51Z) - Oscillation Inversion: Understand the structure of Large Flow Model through the Lens of Inversion Method [60.88467353578118]
We show that a fixed-point-inspired iterative approach to invert real-world images does not achieve convergence, instead oscillating between distinct clusters.
We introduce a simple and fast distribution transfer technique that facilitates image enhancement, stroke-based recoloring, as well as visual prompt-guided image editing.
arXiv Detail & Related papers (2024-11-17T17:45:37Z) - Solving Video Inverse Problems Using Image Diffusion Models [58.464465016269614]
We introduce an innovative video inverse solver that leverages only image diffusion models.<n>Our method treats the time dimension of a video as the batch dimension image diffusion models.<n>We also introduce a batch-consistent sampling strategy that encourages consistency across batches.
arXiv Detail & Related papers (2024-09-04T09:48:27Z) - Motion-adaptive Separable Collaborative Filters for Blind Motion Deblurring [71.60457491155451]
Eliminating image blur produced by various kinds of motion has been a challenging problem.
We propose a novel real-world deblurring filtering model called the Motion-adaptive Separable Collaborative Filter.
Our method provides an effective solution for real-world motion blur removal and achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-04-19T19:44:24Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - DyBluRF: Dynamic Neural Radiance Fields from Blurry Monocular Video [18.424138608823267]
We propose DyBluRF, a dynamic radiance field approach that synthesizes sharp novel views from a monocular video affected by motion blur.
To account for motion blur in input images, we simultaneously capture the camera trajectory and object Discrete Cosine Transform (DCT) trajectories within the scene.
arXiv Detail & Related papers (2024-03-15T08:48:37Z) - LaMD: Latent Motion Diffusion for Image-Conditional Video Generation [63.34574080016687]
latent motion diffusion (LaMD) framework consists of a motion-decomposed video autoencoder and a diffusion-based motion generator.
LaMD generates high-quality videos on various benchmark datasets, including BAIR, Landscape, NATOPS, MUG and CATER-GEN.
arXiv Detail & Related papers (2023-04-23T10:32:32Z) - Motion-Excited Sampler: Video Adversarial Attack with Sparked Prior [63.11478060678794]
We propose an effective motion-excited sampler to obtain motion-aware noise prior.
By using the sparked prior in gradient estimation, we can successfully attack a variety of video classification models with fewer number of queries.
arXiv Detail & Related papers (2020-03-17T10:54:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.