Advanced deep architecture pruning using single filter performance
- URL: http://arxiv.org/abs/2501.12880v1
- Date: Wed, 22 Jan 2025 13:40:43 GMT
- Title: Advanced deep architecture pruning using single filter performance
- Authors: Yarden Tzach, Yuval Meir, Ronit D. Gross, Ofek Tevet, Ella Koresh, Ido Kanter,
- Abstract summary: Pruning the parameters and structure of neural networks reduces the computational complexity, energy consumption, and latency during inference.
Here, we demonstrate how this understanding paves the path to highly dilute the convolutional layers of deep architectures without affecting their overall accuracy using applied filter cluster connections.
- Score: 0.0
- License:
- Abstract: Pruning the parameters and structure of neural networks reduces the computational complexity, energy consumption, and latency during inference. Recently, a novel underlying mechanism for successful deep learning (DL) was presented based on a method that quantitatively measures the single filter performance in each layer of a DL architecture, and a new comprehensive mechanism of how deep learning works was presented. Herein, we demonstrate how this understanding paves the path to highly dilute the convolutional layers of deep architectures without affecting their overall accuracy using applied filter cluster connections (AFCC). AFCC is exemplified on VGG-11 and EfficientNet-B0 architectures trained on CIFAR-100, and its high pruning outperforms other techniques using the same pruning magnitude. Additionally, this technique is broadened to single nodal performance and highly pruning of fully connected layers, suggesting a possible implementation to considerably reduce the complexity of over-parameterized AI tasks.
Related papers
- Informed deep hierarchical classification: a non-standard analysis inspired approach [0.0]
It consists in a multi-output deep neural network equipped with specific projection operators placed before each output layer.
The design of such an architecture, called lexicographic hybrid deep neural network (LH-DNN), has been possible by combining tools from different and quite distant research fields.
To assess the efficacy of the approach, the resulting network is compared against the B-CNN, a convolutional neural network tailored for hierarchical classification tasks.
arXiv Detail & Related papers (2024-09-25T14:12:50Z) - Towards a universal mechanism for successful deep learning [0.0]
This study shows that the accuracy and SNR progressively increase with the layers.
For a given deep architecture, the maximal error rate increases approximately linearly with the number of output labels.
Similar trends were obtained for dataset labels in the range [3, 1,000], thus supporting the universality of this mechanism.
arXiv Detail & Related papers (2023-09-14T09:03:57Z) - A Multi-objective Complex Network Pruning Framework Based on
Divide-and-conquer and Global Performance Impairment Ranking [40.59001171151929]
A multi-objective complex network pruning framework based on divide-and-conquer and global performance impairment ranking is proposed in this paper.
The proposed algorithm achieves a comparable performance with the state-of-the-art pruning methods.
arXiv Detail & Related papers (2023-03-28T12:05:15Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
We present a novel perspective on the interplay between SSL and DC paradigms.
We show that it is feasible to simultaneously learn a dense and gated sub-network from scratch in a SSL setting.
The co-evolution during pre-training of both dense and gated encoder offers a good accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-01-22T17:12:58Z) - Pushing the Efficiency Limit Using Structured Sparse Convolutions [82.31130122200578]
We propose Structured Sparse Convolution (SSC), which leverages the inherent structure in images to reduce the parameters in the convolutional filter.
We show that SSC is a generalization of commonly used layers (depthwise, groupwise and pointwise convolution) in efficient architectures''
Architectures based on SSC achieve state-of-the-art performance compared to baselines on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet classification benchmarks.
arXiv Detail & Related papers (2022-10-23T18:37:22Z) - Pruning-as-Search: Efficient Neural Architecture Search via Channel
Pruning and Structural Reparameterization [50.50023451369742]
Pruning-as-Search (PaS) is an end-to-end channel pruning method to search out desired sub-network automatically and efficiently.
Our proposed architecture outperforms prior arts by around $1.0%$ top-1 accuracy on ImageNet-1000 classification task.
arXiv Detail & Related papers (2022-06-02T17:58:54Z) - SIRe-Networks: Skip Connections over Interlaced Multi-Task Learning and
Residual Connections for Structure Preserving Object Classification [28.02302915971059]
In this paper, we introduce an interlaced multi-task learning strategy, defined SIRe, to reduce the vanishing gradient in relation to the object classification task.
The presented methodology directly improves a convolutional neural network (CNN) by enforcing the input image structure preservation through auto-encoders.
To validate the presented methodology, a simple CNN and various implementations of famous networks are extended via the SIRe strategy and extensively tested on the CIFAR100 dataset.
arXiv Detail & Related papers (2021-10-06T13:54:49Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
This paper proposes a new paradigm that dynamically removes redundant filters by embedding the manifold information of all instances into the space of pruned networks.
The effectiveness of the proposed method is verified on several benchmarks, which shows better performance in terms of both accuracy and computational cost.
arXiv Detail & Related papers (2021-03-10T03:59:03Z) - ALF: Autoencoder-based Low-rank Filter-sharing for Efficient
Convolutional Neural Networks [63.91384986073851]
We propose the autoencoder-based low-rank filter-sharing technique technique (ALF)
ALF shows a reduction of 70% in network parameters, 61% in operations and 41% in execution time, with minimal loss in accuracy.
arXiv Detail & Related papers (2020-07-27T09:01:22Z) - Wasserstein Routed Capsule Networks [90.16542156512405]
We propose a new parameter efficient capsule architecture, that is able to tackle complex tasks.
We show that our network is able to substantially outperform other capsule approaches by over 1.2 % on CIFAR-10.
arXiv Detail & Related papers (2020-07-22T14:38:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.