GANQ: GPU-Adaptive Non-Uniform Quantization for Large Language Models
- URL: http://arxiv.org/abs/2501.12956v2
- Date: Tue, 11 Feb 2025 11:50:15 GMT
- Title: GANQ: GPU-Adaptive Non-Uniform Quantization for Large Language Models
- Authors: Pengxiang Zhao, Xiaoming Yuan,
- Abstract summary: GANQ is a layer-wise post-training non-uniform quantization framework optimized for hardware-efficient lookup table-based mpGEMM.
Extensive experiments demonstrate GANQ's ability to reduce the perplexity gap from the FP16 baseline compared to state-of-the-art methods for both 3-bit and 4-bit quantization.
- Score: 2.1388885579612804
- License:
- Abstract: Large Language Models (LLMs) face significant deployment challenges due to their substantial resource requirements. While low-bit quantized weights can reduce memory usage and improve inference efficiency, current hardware lacks native support for mixed-precision General Matrix Multiplication (mpGEMM), resulting in inefficient dequantization-based implementations. Moreover, uniform quantization methods often fail to capture weight distributions adequately, leading to performance degradation. We propose GANQ (GPU-Adaptive Non-Uniform Quantization), a layer-wise post-training non-uniform quantization framework optimized for hardware-efficient lookup table-based mpGEMM. GANQ achieves superior quantization performance by utilizing a training-free, GPU-adaptive optimization algorithm to efficiently reduce layer-wise quantization errors. Extensive experiments demonstrate GANQ's ability to reduce the perplexity gap from the FP16 baseline compared to state-of-the-art methods for both 3-bit and 4-bit quantization. Furthermore, when deployed on a single NVIDIA RTX 4090 GPU, GANQ's quantized models achieve up to 2.57$\times$ speedup over the baseline, advancing memory and inference efficiency in LLM deployment.
Related papers
- Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
We present a "line theoremarity" establishing a direct relationship between the layer-wise $ell$ reconstruction error and the model perplexity increase due to quantization.
This insight enables two novel applications: (1) a simple data-free LLM quantization method using Hadamard rotations and MSE-optimal grids, dubbed HIGGS, and (2) an optimal solution to the problem of finding non-uniform per-layer quantization levels.
arXiv Detail & Related papers (2024-11-26T15:35:44Z) - Fast Matrix Multiplications for Lookup Table-Quantized LLMs [58.11584672945781]
FLUTE is a flexible lookup table engine for LUT-quantized LLMs.
At batch sizes 32 and quantization group size of 128, the FLUTE kernel can be 2-4x faster than existing GEMM kernels.
arXiv Detail & Related papers (2024-07-15T17:55:42Z) - GPTQT: Quantize Large Language Models Twice to Push the Efficiency [1.3149617027696827]
This paper introduces a new post-training quantization method, GPTQT, to reduce memory usage and enhance processing speed.
Practice has shown that minimizing the quantization error of weights is ineffective, leading to overfitting.
GPTQT employs a progressive two-step approach: initially quantizing weights using Linear quantization to a relatively high bit, followed by converting obtained int weight to lower bit binary coding.
arXiv Detail & Related papers (2024-07-03T08:08:01Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
Post-training quantization (PTQ) is a powerful compression technique investigated in large language models (LLMs)
Existing PTQ methods are not ideal in terms of accuracy and efficiency, especially with below 4 bit-widths.
This paper presents a Salience-Driven Mixed-Precision Quantization scheme for LLMs, namely SliM-LLM.
arXiv Detail & Related papers (2024-05-23T16:21:48Z) - EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models [21.17675493267517]
Post-training quantization (PTQ) and quantization-aware training (QAT) are two main approaches to compress and accelerate diffusion models.
We introduce a data-free and parameter-efficient fine-tuning framework for low-bit diffusion models, dubbed EfficientDM, to achieve QAT-level performance with PTQ-like efficiency.
Our method significantly outperforms previous PTQ-based diffusion models while maintaining similar time and data efficiency.
arXiv Detail & Related papers (2023-10-05T02:51:53Z) - OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models [57.27101446992148]
Large language models (LLMs) have revolutionized natural language processing tasks.
Recent post-training quantization (PTQ) methods are effective in reducing memory footprint and improving the computational efficiency of LLM.
We introduce an Omnidirectionally calibrated Quantization technique for LLMs, which achieves good performance in diverse quantization settings.
arXiv Detail & Related papers (2023-08-25T02:28:35Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
Large Language Models (LLMs) have achieved state-of-the-art performance across various language tasks but pose challenges for practical deployment.
We propose an efficient weight-only quantization method that reduces memory consumption and accelerates inference for LLMs.
We evaluate our approach on large-scale open source models such as OPT-175B and internal MoE models, showcasing minimal accuracy loss while achieving up to 3.65 times higher throughput.
arXiv Detail & Related papers (2023-08-16T23:57:41Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z) - LUT-GEMM: Quantized Matrix Multiplication based on LUTs for Efficient Inference in Large-Scale Generative Language Models [9.727062803700264]
We introduce LUT-GEMM, an efficient kernel for quantized matrix multiplication.
LUT-GEMM eliminates the resource-intensive dequantization process and reduces computational costs.
We show experimentally that when applied to the OPT-175B model with 3-bit quantization, LUT-GEMM substantially accelerates token generation latency.
arXiv Detail & Related papers (2022-06-20T03:48:17Z) - Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via
Generalized Straight-Through Estimation [48.838691414561694]
Nonuniform-to-Uniform Quantization (N2UQ) is a method that can maintain the strong representation ability of nonuniform methods while being hardware-friendly and efficient.
N2UQ outperforms state-of-the-art nonuniform quantization methods by 0.71.8% on ImageNet.
arXiv Detail & Related papers (2021-11-29T18:59:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.