Simulating quantum circuits with arbitrary local noise using Pauli Propagation
- URL: http://arxiv.org/abs/2501.13101v1
- Date: Wed, 22 Jan 2025 18:57:16 GMT
- Title: Simulating quantum circuits with arbitrary local noise using Pauli Propagation
- Authors: Armando Angrisani, Antonio A. Mele, Manuel S. Rudolph, M. Cerezo, Zoe Holmes,
- Abstract summary: We present a classical algorithm for estimating expectation values of arbitrary observables on typical quantum circuits under any incoherent local noise.
We show that this does not apply to average-case circuits, as these can be efficiently simulated using Pauli-path methods.
- Score: 0.0
- License:
- Abstract: We present a polynomial-time classical algorithm for estimating expectation values of arbitrary observables on typical quantum circuits under any incoherent local noise, including non-unital or dephasing. Although previous research demonstrated that some carefully designed quantum circuits affected by non-unital noise cannot be efficiently simulated, we show that this does not apply to average-case circuits, as these can be efficiently simulated using Pauli-path methods. Specifically, we prove that, with high probability over the circuit gates choice, Pauli propagation algorithms with tailored truncation strategies achieve an inversely polynomially small simulation error. This result holds for arbitrary circuit topologies and for any local noise, under the assumption that the distribution of each circuit layer is invariant under single-qubit random gates. Under the same minimal assumptions, we also prove that most noisy circuits can be truncated to an effective logarithmic depth for the task of {estimating} expectation values of observables, thus generalizing prior results to a significantly broader class of circuit ensembles. We further numerically validate our algorithm with simulations on a $6\times6$ lattice of qubits under the effects of amplitude damping and dephasing noise, as well as real-time dynamics on an $11\times11$ lattice of qubits affected by amplitude damping.
Related papers
- Efficient simulation of parametrized quantum circuits under non-unital noise through Pauli backpropagation [4.903915603499684]
Pauli backpropagation algorithms have already demonstrated their ability to efficiently simulate certain classes of parameterized quantum circuits.
Here, we close this gap by adapting Pauli backpropagation to non-unital noise.
arXiv Detail & Related papers (2025-01-22T17:58:59Z) - Pauli path simulations of noisy quantum circuits beyond average case [0.3277163122167433]
For random quantum circuits on $n$ qubits of depth, the task of sampling from the output state can be efficiently performed classically using a Pauli path method.
We derive sufficient conditions for simulatability in terms of noise rate and the fraction of gates that are T gates, and show that if noise is introduced at a faster rate, the simulation becomes classically easy.
arXiv Detail & Related papers (2024-07-22T21:58:37Z) - A polynomial-time classical algorithm for noisy quantum circuits [1.2708457954150887]
We provide a-time classical algorithm for noisy quantum circuits.
Our approach is based upon the intuition that noise exponentially damps non-local correlations.
For constant noise rates, any quantum circuit for which error mitigation is efficient on most input states, is also classically simulable on most input states.
arXiv Detail & Related papers (2024-07-17T17:48:39Z) - Noise-induced shallow circuits and absence of barren plateaus [2.5295633594332334]
We show that any noise truncates' most quantum circuits to effectively logarithmic depth.
We then prove that quantum circuits under any non-unital noise exhibit lack of barren plateaus for cost functions composed of local observables.
arXiv Detail & Related papers (2024-03-20T19:00:49Z) - Emergence of noise-induced barren plateaus in arbitrary layered noise models [44.99833362998488]
In variational quantum algorithms the parameters of a parameterized quantum circuit are optimized in order to minimize a cost function that encodes the solution of the problem.
We discuss how, and in which sense, the phenomenon of noise-induced barren plateaus emerges in parameterized quantum circuits with a layered noise model.
arXiv Detail & Related papers (2023-10-12T15:18:27Z) - Classical simulations of noisy variational quantum circuits [0.0]
Noisely affects quantum computations so that they not only become less accurate but also easier to simulate classically as systems scale up.
We construct a classical simulation algorithm, LOWESA, for estimating expectation values of noisy parameterised quantum circuits.
arXiv Detail & Related papers (2023-06-08T17:52:30Z) - Scalable noisy quantum circuits for biased-noise qubits [37.69303106863453]
We consider biased-noise qubits affected only by bit-flip errors, which is motivated by existing systems of stabilized cat qubits.
For realistic noise models, phase-flip will not be negligible, but in the Pauli-Twirling approximation, we show that our benchmark could check the correctness of circuits containing up to $106$ gates.
arXiv Detail & Related papers (2023-05-03T11:27:50Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
We study the distribution over measurement outcomes of noisy random quantum circuits in the low-fidelity regime.
For local noise that is sufficiently weak and unital, correlations (measured by the linear cross-entropy benchmark) between the output distribution $p_textnoisy$ of a generic noisy circuit instance shrink exponentially.
If the noise is incoherent, the output distribution approaches the uniform distribution $p_textunif$ at precisely the same rate.
arXiv Detail & Related papers (2021-11-29T19:26:28Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
Random quantum circuits are commonly viewed as hard to simulate classically.
We show that approximate simulation of typical instances is almost as hard as exact simulation.
We also conjecture that sufficiently shallow random circuits are efficiently simulable more generally.
arXiv Detail & Related papers (2019-12-31T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.