One Fits All: General Mobility Trajectory Modeling via Masked Conditional Diffusion
- URL: http://arxiv.org/abs/2501.13347v1
- Date: Thu, 23 Jan 2025 03:13:45 GMT
- Title: One Fits All: General Mobility Trajectory Modeling via Masked Conditional Diffusion
- Authors: Qingyue Long, Can Rong, Huandong Wang, Yong Li,
- Abstract summary: Trajectory data play a crucial role in many applications, ranging from network optimization to urban planning.
Existing studies on trajectory data are task-specific, and their applicability is limited to the specific tasks on which they have been trained, such as generation, recovery, or prediction.
We propose a general trajectory modeling framework via conditional diffusion (named GenMove)
Our model significantly outperforms state-of-the-art baselines, with the highest performance exceeding 13% improvement in generation tasks.
- Score: 11.373845190033297
- License:
- Abstract: Trajectory data play a crucial role in many applications, ranging from network optimization to urban planning. Existing studies on trajectory data are task-specific, and their applicability is limited to the specific tasks on which they have been trained, such as generation, recovery, or prediction. However, the potential of a unified model has not yet been fully explored in trajectory modeling. Although various trajectory tasks differ in inputs, outputs, objectives, and conditions, they share common mobility patterns. Based on these common patterns, we can construct a general framework that enables a single model to address different tasks. However, building a trajectory task-general framework faces two critical challenges: 1) the diversity in the formats of different tasks and 2) the complexity of the conditions imposed on different tasks. In this work, we propose a general trajectory modeling framework via masked conditional diffusion (named GenMove). Specifically, we utilize mask conditions to unify diverse formats. To adapt to complex conditions associated with different tasks, we utilize historical trajectory data to obtain contextual trajectory embeddings, which include rich contexts such as spatiotemporal characteristics and user preferences. Integrating the contextual trajectory embedding into diffusion models through a classifier-free guidance approach allows the model to flexibly adjust its outputs based on different conditions. Extensive experiments on mainstream tasks demonstrate that our model significantly outperforms state-of-the-art baselines, with the highest performance improvement exceeding 13% in generation tasks.
Related papers
- Model Evolution Framework with Genetic Algorithm for Multi-Task Reinforcement Learning [85.91908329457081]
Multi-task reinforcement learning employs a single policy to complete various tasks, aiming to develop an agent with generalizability across different scenarios.
Existing approaches typically use a routing network to generate specific routes for each task and reconstruct a set of modules into diverse models to complete multiple tasks simultaneously.
We propose a Model Evolution framework with Genetic Algorithm (MEGA), which enables the model to evolve during training according to the difficulty of the tasks.
arXiv Detail & Related papers (2025-02-19T09:22:34Z) - Modeling Multi-Task Model Merging as Adaptive Projective Gradient Descent [74.02034188307857]
Merging multiple expert models offers a promising approach for performing multi-task learning without accessing their original data.
We find existing methods inevitably discard task-specific information that, while causing conflicts, is crucial for performance.
Our approach consistently outperforms previous methods, achieving state-of-the-art results across diverse architectures and tasks in both vision and NLP domains.
arXiv Detail & Related papers (2025-01-02T12:45:21Z) - The Non-Local Model Merging Problem: Permutation Symmetries and Variance Collapse [25.002218722102505]
Model merging aims to efficiently combine the weights of multiple expert models, each trained on a specific task, into a single multi-task model.
This work explores the more challenging scenario of "non-local" merging.
Standard merging techniques often fail to generalize effectively in this non-local setting.
We propose a multi-task technique to re-scale and shift the output activations of the merged model for each task, aligning its output statistics with those of the corresponding task-specific expert models.
arXiv Detail & Related papers (2024-10-16T17:41:59Z) - Large Motion Model for Unified Multi-Modal Motion Generation [50.56268006354396]
Large Motion Model (LMM) is a motion-centric, multi-modal framework that unifies mainstream motion generation tasks into a generalist model.
LMM tackles these challenges from three principled aspects.
arXiv Detail & Related papers (2024-04-01T17:55:11Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
We present a model that can perform multiple vision tasks and can be adapted to other downstream tasks efficiently.
Our approach achieves comparable results to single-task state-of-the-art models and demonstrates strong generalization on downstream tasks.
arXiv Detail & Related papers (2023-06-29T17:59:57Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - Task-Adaptive Meta-Learning Framework for Advancing Spatial
Generalizability [5.448577641039577]
We propose a model-agnostic meta-learning framework that ensembles regionally heterogeneous data into location-sensitive meta tasks.
One major advantage of our proposed method is that it improves the model adaptation to a large number of heterogeneous tasks.
It also enhances the model generalization by automatically adapting the meta model of the corresponding difficulty level to any new tasks.
arXiv Detail & Related papers (2022-12-10T01:50:35Z) - Uni-Perceiver-MoE: Learning Sparse Generalist Models with Conditional
MoEs [63.936622239286685]
We find that interference among different tasks and modalities is the main factor to this phenomenon.
We introduce the Conditional Mixture-of-Experts (Conditional MoEs) to generalist models.
Code and pre-trained generalist models shall be released.
arXiv Detail & Related papers (2022-06-09T17:59:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.