NUDT4MSTAR: A Large Dataset and Benchmark Towards Remote Sensing Object Recognition in the Wild
- URL: http://arxiv.org/abs/2501.13354v2
- Date: Wed, 29 Jan 2025 23:57:36 GMT
- Title: NUDT4MSTAR: A Large Dataset and Benchmark Towards Remote Sensing Object Recognition in the Wild
- Authors: Yongxiang Liu, Weijie Li, Li Liu, Jie Zhou, Xuying Xiong, Bowen Peng, Yafei Song, Wei Yang, Tianpeng Liu, Zhen Liu, Xiang Li,
- Abstract summary: This paper introduces NUDT4MSTAR, a large-scale SAR dataset for remote sensing target recognition in the wild.
NUDT4MSTAR represents a significant leap forward in dataset scale, containing over 190,000 images-tenfold the size of its predecessors.
- Score: 32.95927545676425
- License:
- Abstract: As an indispensable sensor for Remote sensing, Synthetic Aperture Radar (SAR) has a unique capability for all-day imaging. Nevertheless, in a data-driven era, the scarcity of large-scale datasets poses a significant bottleneck to advancing SAR automatic target recognition (ATR) technology. This paper introduces NUDT4MSTAR, a large-scale SAR dataset for remote sensing target recognition in the wild, including 40 vehicle target types and various imaging conditions across 5 realistic scenes. NUDT4MSTAR represents a significant leap forward in dataset scale, containing over 190,000 images-tenfold the size of its predecessors. We meticulously annotate each image with detailed target information and imaging conditions. Besides, data in both processed magnitude images and original complex formats are provided. Then, we construct a comprehensive benchmark consisting of 7 experiments with 15 recognition methods focusing on the stable and effective ATR issues. Besides, we conduct transfer learning experiments utilizing various models training on NUDT4MSTAR and apply them to three other target datasets, demonstrating its substantial potential for the broader field of ground objects ATR. Finally, we discuss this dataset's application value and ATR's significant challenges. To the best of our knowledge, this work marks the first-ever endeavor to create a large-scale dataset benchmark for fine-grained SAR recognition in the wild, featuring an extensive collection of exhaustively annotated vehicle images. We expect that the open source of NUDT4MSTAR will facilitate the development of SAR ATR and attract a wider community of researchers.
Related papers
- EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision [72.84868704100595]
This paper presents a dataset specifically designed for self-supervision on remote sensing data, intended to enhance deep learning applications on Earth monitoring tasks.
The dataset spans 15 tera pixels of global remote-sensing data, combining imagery from a diverse range of sources, including NEON, Sentinel, and a novel release of 1m spatial resolution data from Satellogic.
Accompanying the dataset is EarthMAE, a tailored Masked Autoencoder developed to tackle the distinct challenges of remote sensing data.
arXiv Detail & Related papers (2025-01-14T13:42:22Z) - FlightScope: An Experimental Comparative Review of Aircraft Detection Algorithms in Satellite Imagery [2.9687381456164004]
This paper critically evaluates and compares a suite of advanced object detection algorithms customized for the task of identifying aircraft within satellite imagery.
This research encompasses an array of methodologies including YOLO versions 5 and 8, Faster RCNN, CenterNet, RetinaNet, RTMDet, and DETR, all trained from scratch.
YOLOv5 emerges as a robust solution for aerial object detection, underlining its importance through superior mean average precision, Recall, and Intersection over Union scores.
arXiv Detail & Related papers (2024-04-03T17:24:27Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
We establish a new benchmark dataset and an open-source method for large-scale SAR object detection.
Our dataset, SARDet-100K, is a result of intense surveying, collecting, and standardizing 10 existing SAR detection datasets.
To the best of our knowledge, SARDet-100K is the first COCO-level large-scale multi-class SAR object detection dataset ever created.
arXiv Detail & Related papers (2024-03-11T09:20:40Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks.
Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data.
In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities.
arXiv Detail & Related papers (2024-03-08T16:18:04Z) - Expanding Small-Scale Datasets with Guided Imagination [92.5276783917845]
dataset expansion is a new task aimed at expanding a ready-to-use small dataset by automatically creating new labeled samples.
GIF conducts data imagination by optimizing the latent features of the seed data in the semantically meaningful space of the prior model.
GIF-SD obtains 13.5% higher model accuracy on natural image datasets than unguided expansion with SD.
arXiv Detail & Related papers (2022-11-25T09:38:22Z) - Highly Accurate Dichotomous Image Segmentation [139.79513044546]
A new task called dichotomous image segmentation (DIS) aims to segment highly accurate objects from natural images.
We collect the first large-scale dataset, DIS5K, which contains 5,470 high-resolution (e.g., 2K, 4K or larger) images.
We also introduce a simple intermediate supervision baseline (IS-Net) using both feature-level and mask-level guidance for DIS model training.
arXiv Detail & Related papers (2022-03-06T20:09:19Z) - Learning Efficient Representations for Enhanced Object Detection on
Large-scene SAR Images [16.602738933183865]
It is a challenging problem to detect and recognize targets on complex large-scene Synthetic Aperture Radar (SAR) images.
Recently developed deep learning algorithms can automatically learn the intrinsic features of SAR images.
We propose an efficient and robust deep learning based target detection method.
arXiv Detail & Related papers (2022-01-22T03:25:24Z) - Deep-Learning-Based Single-Image Height Reconstruction from
Very-High-Resolution SAR Intensity Data [1.7894377200944511]
We present the first-ever demonstration of deep learning-based single image height prediction for the other important sensor modality in remote sensing: synthetic aperture radar (SAR) data.
Besides the adaptation of a convolutional neural network (CNN) architecture for SAR intensity images, we present a workflow for the generation of training data.
Since we put a particular emphasis on transferability, we are able to confirm that deep learning-based single-image height estimation is not only possible, but also transfers quite well to unseen data.
arXiv Detail & Related papers (2021-11-03T08:20:03Z) - The QXS-SAROPT Dataset for Deep Learning in SAR-Optical Data Fusion [14.45289690639374]
We publish the QXS-SAROPT dataset to foster deep learning research in SAR-optical data fusion.
We show exemplary results for two representative applications, namely SAR-optical image matching and SAR ship detection boosted by cross-modal information from optical images.
arXiv Detail & Related papers (2021-03-15T10:22:46Z) - FAIR1M: A Benchmark Dataset for Fine-grained Object Recognition in
High-Resolution Remote Sensing Imagery [21.9319970004788]
We propose a novel benchmark dataset with more than 1 million instances and more than 15,000 images for Fine-grAined object recognItion in high-Resolution remote sensing imagery.
All objects in the FAIR1M dataset are annotated with respect to 5 categories and 37 sub-categories by oriented bounding boxes.
arXiv Detail & Related papers (2021-03-09T17:20:15Z) - Counting dense objects in remote sensing images [52.182698295053264]
Estimating number of interested objects from a given image is a challenging yet important task.
In this paper, we are interested in counting dense objects from remote sensing images.
To address these issues, we first construct a large-scale object counting dataset based on remote sensing images.
We then benchmark the dataset by designing a novel neural network which can generate density map of an input image.
arXiv Detail & Related papers (2020-02-14T09:13:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.