Non-unitary Variational Quantum Eigensolver with the Localized Active Space Method and Cost Mitigation
- URL: http://arxiv.org/abs/2501.13371v1
- Date: Thu, 23 Jan 2025 04:18:57 GMT
- Title: Non-unitary Variational Quantum Eigensolver with the Localized Active Space Method and Cost Mitigation
- Authors: Qiaohong Wang, Ruhee D'Cunha, Abhishek Mitra, Yuri Alexeev, Stephen K. Gray, Matthew Otten, Laura Gagliardi,
- Abstract summary: Hardware-efficient localized active space self-consistent field (SCFS) approximates complete active space self-consistent field (CFF)
HEA offer affordable and shallower circuits, yet they often fail to capture the necessary correlation.
LAS-nuVQE is shown to recover interfragment correlations, reach chemical accuracy with a small number of gates (70) in both H4 and square cyclobutadiene.
- Score: 0.33923727961771083
- License:
- Abstract: Accurately describing strongly correlated systems with affordable quantum resources remains a central challenge for quantum chemistry applications on near and intermediate-term quantum computers. The localized active space self-consistent field (LASSCF) approximates the complete active space self-consistent field (CASSCF) by generating active space-based wave functions within specific fragments while treating interfragment correlation with mean-field approach, hence is computationally less expensive. Hardware-efficient ansatzes (HEA) offer affordable and shallower circuits, yet they often fail to capture the necessary correlation. Previously, Jastrow-factor-inspired non-unitary qubit operators were proposed to use with HEA for variational quantum eigensolver (VQE) calculations (nuVQE), as they do not increase circuit depths and recover correlation beyond the mean-field level for Hartree-Fock initial states. Here, we explore running nuVQE with LASSCF as the initial state. The method, named LAS-nuVQE, is shown to recover interfragment correlations, reach chemical accuracy with a small number of gates (<70) in both H4 and square cyclobutadiene. To further address the inherent symmetry-breaking in HEA, we implemented spin-constrained LAS-nuVQE to extend the capabilities of HEA further and show spin-pure results for square cyclobutadiene. We mitigate the increased measurement overhead of nuVQE via Pauli grouping and shot-frugal sampling, reducing measurement costs by up to two orders of magnitude compared to ungrouped operator, and show that one can achieve better accuracy with a small number of shots (10^3-4) per one expectation value calculation compared to noiseless simulations with one or two orders of magnitude more shots. Finally, wall clock time estimates show that, with our measurement mitigation protocols, nuVQE becomes a cheaper and more accurate alternative than VQE with HEA.
Related papers
- Bayesian Quantum Amplitude Estimation [49.1574468325115]
We introduce BAE, a noise-aware Bayesian algorithm for quantum amplitude estimation.
We show that BAE achieves Heisenberg-limited estimation and benchmark it against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
Quantum Neuromorphic Computing (QNC) merges quantum computation with neural computation to create scalable, noise-resilient algorithms for quantum machine learning (QML)
At the core of QNC is the quantum perceptron (QP), which leverages the analog dynamics of interacting qubits to enable universal quantum computation.
arXiv Detail & Related papers (2024-11-13T23:56:20Z) - Projective Quantum Eigensolver with Generalized Operators [0.0]
We develop a methodology for determining the generalized operators in terms of a closed form residual equations in the PQE framework.
With the application on several molecular systems, we have demonstrated our ansatz achieves similar accuracy to the (disentangled) UCC with singles, doubles and triples.
arXiv Detail & Related papers (2024-10-21T15:40:22Z) - Subspace-Based Local Compilation of Variational Quantum Circuits for Large-Scale Quantum Many-Body Simulation [0.0]
This paper proposes a hybrid quantum-classical algorithm for compiling the time-evolution operator.
It achieves a 95% reduction in circuit depth compared to Trotterization while maintaining accuracy.
We estimate the gate count needed to execute the quantum simulations using the LSVQC on near-term quantum computing architectures.
arXiv Detail & Related papers (2024-07-19T09:50:01Z) - Entanglement Distribution Delay Optimization in Quantum Networks with Distillation [51.53291671169632]
Quantum networks (QNs) distribute entangled states to enable distributed quantum computing and sensing applications.
QS resource allocation framework is proposed to enhance the end-to-end (e2e) fidelity and satisfy minimum rate and fidelity requirements.
arXiv Detail & Related papers (2024-05-15T02:04:22Z) - Entropy bounds for device-independent quantum key distribution with local Bell test [0.0]
One of the main challenges in device-independent quantum key distribution (DIQKD) is achieving the required Bell violation over long distances.
Recent works have explored the concept of certifying nonlocal correlations over extended distances through the use of a local Bell test.
Here, an additional quantum device is placed in close proximity to one party, using short-distance correlations to verify nonlocal behavior at long distances.
arXiv Detail & Related papers (2024-03-31T20:33:40Z) - Compressed-sensing Lindbladian quantum tomography with trapped ions [44.99833362998488]
Characterizing the dynamics of quantum systems is a central task for the development of quantum information processors.
We propose two different improvements of Lindbladian quantum tomography (LQT) that alleviate previous shortcomings.
arXiv Detail & Related papers (2024-03-12T09:58:37Z) - Variational quantum algorithm-preserving feasible space for solving the
uncapacitated facility location problem [3.3682090109106446]
We propose the Variational Quantum Algorithm-Preserving Feasible Space (VQA-PFS) ansatz.
This ansatz applies mixed operators on constrained variables while employing Hardware-Efficient Ansatz (HEA) on unconstrained variables.
The numerical results demonstrate that VQA-PFS significantly enhances the success probability and exhibits faster convergence.
arXiv Detail & Related papers (2023-12-12T01:36:49Z) - Toward Consistent High-fidelity Quantum Learning on Unstable Devices via
Efficient In-situ Calibration [5.0854551390284]
In the near-term noisy intermediate-scale quantum (NISQ) era, high noise will significantly reduce the fidelity of quantum computing.
In this paper, we propose a novel quantum pulse-based noise adaptation framework, namely QuPAD.
Experiments show that the runtime on quantum devices of QuPAD with 8-10 qubits is less than 15 minutes, which is up to 270x faster than the parameter-shift approach.
arXiv Detail & Related papers (2023-09-12T15:39:06Z) - Scaling Limits of Quantum Repeater Networks [62.75241407271626]
Quantum networks (QNs) are a promising platform for secure communications, enhanced sensing, and efficient distributed quantum computing.
Due to the fragile nature of quantum states, these networks face significant challenges in terms of scalability.
In this paper, the scaling limits of quantum repeater networks (QRNs) are analyzed.
arXiv Detail & Related papers (2023-05-15T14:57:01Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.