Rethinking the Sample Relations for Few-Shot Classification
- URL: http://arxiv.org/abs/2501.13418v1
- Date: Thu, 23 Jan 2025 06:45:17 GMT
- Title: Rethinking the Sample Relations for Few-Shot Classification
- Authors: Guowei Yin, Sheng Huang, Luwen Huangfu, Yi Zhang, Xiaohong Zhang,
- Abstract summary: Multi-Grained Relation Contrastive Learning (MGRCL) is a pre-training feature learning model to boost few-shot learning.
MGRCL categorizes sample relations into three types: intra-sample relation of the same sample under different transformations, intra-class relation of homogenous samples, and inter-class relation of inhomogeneous samples.
- Score: 10.98165110941327
- License:
- Abstract: Feature quality is paramount for classification performance, particularly in few-shot scenarios. Contrastive learning, a widely adopted technique for enhancing feature quality, leverages sample relations to extract intrinsic features that capture semantic information and has achieved remarkable success in Few-Shot Learning (FSL). Nevertheless, current few-shot contrastive learning approaches often overlook the semantic similarity discrepancies at different granularities when employing the same modeling approach for different sample relations, which limits the potential of few-shot contrastive learning. In this paper, we introduce a straightforward yet effective contrastive learning approach, Multi-Grained Relation Contrastive Learning (MGRCL), as a pre-training feature learning model to boost few-shot learning by meticulously modeling sample relations at different granularities. MGRCL categorizes sample relations into three types: intra-sample relation of the same sample under different transformations, intra-class relation of homogenous samples, and inter-class relation of inhomogeneous samples. In MGRCL, we design Transformation Consistency Learning (TCL) to ensure the rigorous semantic consistency of a sample under different transformations by aligning predictions of input pairs. Furthermore, to preserve discriminative information, we employ Class Contrastive Learning (CCL) to ensure that a sample is always closer to its homogenous samples than its inhomogeneous ones, as homogenous samples share similar semantic content while inhomogeneous samples have different semantic content. Our method is assessed across four popular FSL benchmarks, showing that such a simple pre-training feature learning method surpasses a majority of leading FSL methods. Moreover, our method can be incorporated into other FSL methods as the pre-trained model and help them obtain significant performance gains.
Related papers
- Contrastive Learning with Synthetic Positives [11.932323457691945]
Contrastive learning with the nearest neighbor has proved to be one of the most efficient self-supervised learning (SSL) techniques.
In this paper, we introduce a novel approach called Contrastive Learning with Synthetic Positives (NCLP)
NCLP utilizes synthetic images, generated by an unconditional diffusion model, as the additional positives to help the model learn from diverse positives.
arXiv Detail & Related papers (2024-08-30T01:47:43Z) - CKD: Contrastive Knowledge Distillation from A Sample-wise Perspective [48.99488315273868]
We present a contrastive knowledge distillation approach, which can be formulated as a sample-wise alignment problem with intra- and inter-sample constraints.
Our method minimizes logit differences within the same sample by considering their numerical values.
We conduct comprehensive experiments on three datasets including CIFAR-100, ImageNet-1K, and MS COCO.
arXiv Detail & Related papers (2024-04-22T11:52:40Z) - Self-Evolution Learning for Mixup: Enhance Data Augmentation on Few-Shot
Text Classification Tasks [75.42002070547267]
We propose a self evolution learning (SE) based mixup approach for data augmentation in text classification.
We introduce a novel instance specific label smoothing approach, which linearly interpolates the model's output and one hot labels of the original samples to generate new soft for label mixing up.
arXiv Detail & Related papers (2023-05-22T23:43:23Z) - Beyond Instance Discrimination: Relation-aware Contrastive
Self-supervised Learning [75.46664770669949]
We present relation-aware contrastive self-supervised learning (ReCo) to integrate instance relations.
Our ReCo consistently gains remarkable performance improvements.
arXiv Detail & Related papers (2022-11-02T03:25:28Z) - Contrastive Principal Component Learning: Modeling Similarity by
Augmentation Overlap [50.48888534815361]
We propose a novel Contrastive Principal Component Learning (CPCL) method composed of a contrastive-like loss and an on-the-fly projection loss.
By CPCL, the learned low-dimensional embeddings theoretically preserve the similarity of augmentation distribution between samples.
arXiv Detail & Related papers (2022-06-01T13:03:58Z) - Weak Augmentation Guided Relational Self-Supervised Learning [80.0680103295137]
We introduce a novel relational self-supervised learning (ReSSL) framework that learns representations by modeling the relationship between different instances.
Our proposed method employs sharpened distribution of pairwise similarities among different instances as textitrelation metric.
Experimental results show that our proposed ReSSL substantially outperforms the state-of-the-art methods across different network architectures.
arXiv Detail & Related papers (2022-03-16T16:14:19Z) - ReSSL: Relational Self-Supervised Learning with Weak Augmentation [68.47096022526927]
Self-supervised learning has achieved great success in learning visual representations without data annotations.
We introduce a novel relational SSL paradigm that learns representations by modeling the relationship between different instances.
Our proposed ReSSL significantly outperforms the previous state-of-the-art algorithms in terms of both performance and training efficiency.
arXiv Detail & Related papers (2021-07-20T06:53:07Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.