LDR-Net: A Novel Framework for AI-generated Image Detection via Localized Discrepancy Representation
- URL: http://arxiv.org/abs/2501.13475v1
- Date: Thu, 23 Jan 2025 08:46:39 GMT
- Title: LDR-Net: A Novel Framework for AI-generated Image Detection via Localized Discrepancy Representation
- Authors: JiaXin Chen, Miao Hu, DengYong Zhang, Yun Song, Xin Liao,
- Abstract summary: We propose the localized discrepancy representation network (LDR-Net) for detecting AI-generated images.
LDR-Net captures smoothing artifacts and texture irregularities, which are common but often overlooked.
It achieves state-of-the-art performance in detecting generated images and exhibits satisfactory generalization across unseen generative models.
- Score: 30.677834580640123
- License:
- Abstract: With the rapid advancement of generative models, the visual quality of generated images has become nearly indistinguishable from the real ones, posing challenges to content authenticity verification. Existing methods for detecting AI-generated images primarily focus on specific forgery clues, which are often tailored to particular generative models like GANs or diffusion models. These approaches struggle to generalize across architectures. Building on the observation that generative images often exhibit local anomalies, such as excessive smoothness, blurred textures, and unnatural pixel variations in small regions, we propose the localized discrepancy representation network (LDR-Net), a novel approach for detecting AI-generated images. LDR-Net captures smoothing artifacts and texture irregularities, which are common but often overlooked. It integrates two complementary modules: local gradient autocorrelation (LGA) which models local smoothing anomalies to detect smoothing anomalies, and local variation pattern (LVP) which captures unnatural regularities by modeling the complexity of image patterns. By merging LGA and LVP features, a comprehensive representation of localized discrepancies can be provided. Extensive experiments demonstrate that our LDR-Net achieves state-of-the-art performance in detecting generated images and exhibits satisfactory generalization across unseen generative models. The code will be released upon acceptance of this paper.
Related papers
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities [88.398085358514]
Contrastive Deepfake Embeddings (CoDE) is a novel embedding space specifically designed for deepfake detection.
CoDE is trained via contrastive learning by additionally enforcing global-local similarities.
arXiv Detail & Related papers (2024-07-29T18:00:10Z) - Rethinking the Up-Sampling Operations in CNN-based Generative Network
for Generalizable Deepfake Detection [86.97062579515833]
We introduce the concept of Neighboring Pixel Relationships(NPR) as a means to capture and characterize the generalized structural artifacts stemming from up-sampling operations.
A comprehensive analysis is conducted on an open-world dataset, comprising samples generated by tft28 distinct generative models.
This analysis culminates in the establishment of a novel state-of-the-art performance, showcasing a remarkable tft11.6% improvement over existing methods.
arXiv Detail & Related papers (2023-12-16T14:27:06Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [59.968362815126326]
Digital image forensics plays a crucial role in image authentication and manipulation localization.
This paper presents a generalized and robust manipulation localization model through the analysis of pixel inconsistency artifacts.
Experiments show that our method successfully extracts inherent pixel-inconsistency forgery fingerprints.
arXiv Detail & Related papers (2023-09-30T02:54:51Z) - CRADL: Contrastive Representations for Unsupervised Anomaly Detection
and Localization [2.8659934481869715]
Unsupervised anomaly detection in medical imaging aims to detect and localize arbitrary anomalies without requiring anomalous data during training.
Most current state-of-the-art methods use latent variable generative models operating directly on the images.
We propose CRADL whose core idea is to model the distribution of normal samples directly in the low-dimensional representation space of an encoder trained with a contrastive pretext-task.
arXiv Detail & Related papers (2023-01-05T16:07:49Z) - AnoViT: Unsupervised Anomaly Detection and Localization with Vision
Transformer-based Encoder-Decoder [3.31490164885582]
We propose a vision transformer-based encoder-decoder model, named AnoViT, to reflect normal information by additionally learning the global relationship between image patches.
The proposed model performed better than the convolution-based model on three benchmark datasets.
arXiv Detail & Related papers (2022-03-21T09:01:37Z) - A One-Shot Texture-Perceiving Generative Adversarial Network for
Unsupervised Surface Inspection [4.6284467350305585]
We propose a hierarchical texture-perceiving generative adversarial network (HTP-GAN) that is learned from the one-shot normal image in an unsupervised scheme.
Specifically, the HTP-GAN contains a pyramid of convolutional GANs that can capture the global structure and fine-grained representation of an image simultaneously.
In the discriminator, a texture-perceiving module is devised to capture the spatially invariant representation of normal image via directional convolutions.
arXiv Detail & Related papers (2021-06-12T15:05:17Z) - DFR: Deep Feature Reconstruction for Unsupervised Anomaly Segmentation [24.52418722578279]
This paper proposes an effective unsupervised anomaly segmentation approach.
It can detect and segment out the anomalies in small and confined regions of images.
It advances the state-of-the-art performances on several benchmark datasets.
arXiv Detail & Related papers (2020-12-13T18:30:51Z) - Anomaly localization by modeling perceptual features [3.04585143845864]
Feature-Augmented VAE is trained by reconstructing the input image in pixel space, and also in several different feature spaces.
It achieves clear improvement over state-of-the-art methods on the MVTec anomaly detection and localization datasets.
arXiv Detail & Related papers (2020-08-12T15:09:13Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.