LDR-Net: A Novel Framework for AI-generated Image Detection via Localized Discrepancy Representation
- URL: http://arxiv.org/abs/2501.13475v1
- Date: Thu, 23 Jan 2025 08:46:39 GMT
- Title: LDR-Net: A Novel Framework for AI-generated Image Detection via Localized Discrepancy Representation
- Authors: JiaXin Chen, Miao Hu, DengYong Zhang, Yun Song, Xin Liao,
- Abstract summary: We propose the localized discrepancy representation network (LDR-Net) for detecting AI-generated images.<n>LDR-Net captures smoothing artifacts and texture irregularities, which are common but often overlooked.<n>It achieves state-of-the-art performance in detecting generated images and exhibits satisfactory generalization across unseen generative models.
- Score: 30.677834580640123
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid advancement of generative models, the visual quality of generated images has become nearly indistinguishable from the real ones, posing challenges to content authenticity verification. Existing methods for detecting AI-generated images primarily focus on specific forgery clues, which are often tailored to particular generative models like GANs or diffusion models. These approaches struggle to generalize across architectures. Building on the observation that generative images often exhibit local anomalies, such as excessive smoothness, blurred textures, and unnatural pixel variations in small regions, we propose the localized discrepancy representation network (LDR-Net), a novel approach for detecting AI-generated images. LDR-Net captures smoothing artifacts and texture irregularities, which are common but often overlooked. It integrates two complementary modules: local gradient autocorrelation (LGA) which models local smoothing anomalies to detect smoothing anomalies, and local variation pattern (LVP) which captures unnatural regularities by modeling the complexity of image patterns. By merging LGA and LVP features, a comprehensive representation of localized discrepancies can be provided. Extensive experiments demonstrate that our LDR-Net achieves state-of-the-art performance in detecting generated images and exhibits satisfactory generalization across unseen generative models. The code will be released upon acceptance of this paper.
Related papers
- MLEP: Multi-granularity Local Entropy Patterns for Universal AI-generated Image Detection [44.40575446607237]
There is an urgent need for effective methods to detect AI-generated images (AIGI)
We propose Multi-granularity Local Entropy Patterns (MLEP), a set of entropy feature maps computed across shuffled small patches over multiple image scaled.
MLEP comprehensively captures pixel relationships across dimensions and scales while significantly disrupting image semantics, reducing potential content bias.
arXiv Detail & Related papers (2025-04-18T14:50:23Z) - Zooming In on Fakes: A Novel Dataset for Localized AI-Generated Image Detection with Forgery Amplification Approach [69.01456182499486]
textbfBR-Gen is a large-scale dataset of 150,000 locally forged images with diverse scene-aware annotations.
textbfNFA-ViT is a Noise-guided Forgery Amplification Vision Transformer that enhances the detection of localized forgeries.
arXiv Detail & Related papers (2025-04-16T09:57:23Z) - HRR: Hierarchical Retrospection Refinement for Generated Image Detection [16.958383381415445]
We propose a diffusion model-based generative image detection framework termed Hierarchical Retrospection Refinement(HRR)
The HRR framework consistently delivers significant performance improvements, outperforming state-of-the-art methods in generated image detection task.
arXiv Detail & Related papers (2025-02-25T05:13:44Z) - Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities [88.398085358514]
Contrastive Deepfake Embeddings (CoDE) is a novel embedding space specifically designed for deepfake detection.
CoDE is trained via contrastive learning by additionally enforcing global-local similarities.
arXiv Detail & Related papers (2024-07-29T18:00:10Z) - Rethinking the Up-Sampling Operations in CNN-based Generative Network
for Generalizable Deepfake Detection [86.97062579515833]
We introduce the concept of Neighboring Pixel Relationships(NPR) as a means to capture and characterize the generalized structural artifacts stemming from up-sampling operations.
A comprehensive analysis is conducted on an open-world dataset, comprising samples generated by tft28 distinct generative models.
This analysis culminates in the establishment of a novel state-of-the-art performance, showcasing a remarkable tft11.6% improvement over existing methods.
arXiv Detail & Related papers (2023-12-16T14:27:06Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [59.968362815126326]
Digital image forensics plays a crucial role in image authentication and manipulation localization.
This paper presents a generalized and robust manipulation localization model through the analysis of pixel inconsistency artifacts.
Experiments show that our method successfully extracts inherent pixel-inconsistency forgery fingerprints.
arXiv Detail & Related papers (2023-09-30T02:54:51Z) - CRADL: Contrastive Representations for Unsupervised Anomaly Detection
and Localization [2.8659934481869715]
Unsupervised anomaly detection in medical imaging aims to detect and localize arbitrary anomalies without requiring anomalous data during training.
Most current state-of-the-art methods use latent variable generative models operating directly on the images.
We propose CRADL whose core idea is to model the distribution of normal samples directly in the low-dimensional representation space of an encoder trained with a contrastive pretext-task.
arXiv Detail & Related papers (2023-01-05T16:07:49Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - AnoViT: Unsupervised Anomaly Detection and Localization with Vision
Transformer-based Encoder-Decoder [3.31490164885582]
We propose a vision transformer-based encoder-decoder model, named AnoViT, to reflect normal information by additionally learning the global relationship between image patches.
The proposed model performed better than the convolution-based model on three benchmark datasets.
arXiv Detail & Related papers (2022-03-21T09:01:37Z) - A One-Shot Texture-Perceiving Generative Adversarial Network for
Unsupervised Surface Inspection [4.6284467350305585]
We propose a hierarchical texture-perceiving generative adversarial network (HTP-GAN) that is learned from the one-shot normal image in an unsupervised scheme.
Specifically, the HTP-GAN contains a pyramid of convolutional GANs that can capture the global structure and fine-grained representation of an image simultaneously.
In the discriminator, a texture-perceiving module is devised to capture the spatially invariant representation of normal image via directional convolutions.
arXiv Detail & Related papers (2021-06-12T15:05:17Z) - DFR: Deep Feature Reconstruction for Unsupervised Anomaly Segmentation [24.52418722578279]
This paper proposes an effective unsupervised anomaly segmentation approach.
It can detect and segment out the anomalies in small and confined regions of images.
It advances the state-of-the-art performances on several benchmark datasets.
arXiv Detail & Related papers (2020-12-13T18:30:51Z) - Anomaly localization by modeling perceptual features [3.04585143845864]
Feature-Augmented VAE is trained by reconstructing the input image in pixel space, and also in several different feature spaces.
It achieves clear improvement over state-of-the-art methods on the MVTec anomaly detection and localization datasets.
arXiv Detail & Related papers (2020-08-12T15:09:13Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.