Text-to-SQL based on Large Language Models and Database Keyword Search
- URL: http://arxiv.org/abs/2501.13594v1
- Date: Thu, 23 Jan 2025 12:03:29 GMT
- Title: Text-to-SQL based on Large Language Models and Database Keyword Search
- Authors: Eduardo R. Nascimento, Caio Viktor S. Avila, Yenier T. Izquierdo, Grettel M. García, Lucas Feijó L. Andrade, Michelle S. P. Facina, Melissa Lemos, Marco A. Casanova,
- Abstract summary: This paper proposes a strategy to compile Natural Language (NL) questions intosql queries.
The strategy incorporates a dynamic few-shot examples strategy and leverages the services provided by a database keyword search (KwS) platform.
Experiments show that the strategy achieves an accuracy on the real-world relational database that surpasses state-of-the-art approaches.
- Score: 0.0
- License:
- Abstract: Text-to-SQL prompt strategies based on Large Language Models (LLMs) achieve remarkable performance on well-known benchmarks. However, when applied to real-world databases, their performance is significantly less than for these benchmarks, especially for Natural Language (NL) questions requiring complex filters and joins to be processed. This paper then proposes a strategy to compile NL questions into SQL queries that incorporates a dynamic few-shot examples strategy and leverages the services provided by a database keyword search (KwS) platform. The paper details how the precision and recall of the schema-linking process are improved with the help of the examples provided and the keyword-matching service that the KwS platform offers. Then, it shows how the KwS platform can be used to synthesize a view that captures the joins required to process an input NL question and thereby simplify the SQL query compilation step. The paper includes experiments with a real-world relational database to assess the performance of the proposed strategy. The experiments suggest that the strategy achieves an accuracy on the real-world relational database that surpasses state-of-the-art approaches. The paper concludes by discussing the results obtained.
Related papers
- Bridging the Gap: Enabling Natural Language Queries for NoSQL Databases through Text-to-NoSQL Translation [25.638927795540454]
We introduce the Text-to-No task, which aims to convert natural language queries into accessible queries.
To promote research in this area, we released a large-scale and open-source dataset for this task, named TEND (short interfaces for Text-to-No dataset)
We also designed a SLM (Small Language Model)-assisted and RAG (Retrieval-augmented Generation)-assisted multi-step framework called SMART, which is specifically designed for Text-to-No conversion.
arXiv Detail & Related papers (2025-02-16T17:01:48Z) - RSL-SQL: Robust Schema Linking in Text-to-SQL Generation [51.00761167842468]
We propose a novel framework called RSL- that combines bidirectional schema linking, contextual information augmentation, binary selection strategy, and multi-turn self-correction.
benchmarks demonstrate that our approach achieves SOTA execution accuracy among open-source solutions, with 67.2% on BIRD and 87.9% on GPT-4ocorrection.
Our approach outperforms a series of GPT-4 based Text-to-Seek systems when adopting DeepSeek (much cheaper) with same intact prompts.
arXiv Detail & Related papers (2024-10-31T16:22:26Z) - Enhancing LLM Fine-tuning for Text-to-SQLs by SQL Quality Measurement [1.392448435105643]
Text-to-s enables non-expert users to effortlessly retrieve desired information from databases using natural language queries.
Current state-of-the-art (SOTA) models like GPT4 and T5 have shown impressive performance on large-scale benchmarks like BIRD.
This paper proposed a novel approach that only needs SQL Quality to enhance Text-to-s performance.
arXiv Detail & Related papers (2024-10-02T17:21:51Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
Large language models (LLMs) with in-context learning have significantly improved the performance of text-to- task.
We propose RB-, a novel retrieval-based framework for in-context prompt engineering.
Experiment results demonstrate that our model achieves better performance than several competitive baselines on public datasets BIRD and Spider.
arXiv Detail & Related papers (2024-07-11T08:19:58Z) - Improving Retrieval-augmented Text-to-SQL with AST-based Ranking and Schema Pruning [10.731045939849125]
We focus on Text-to- semantic parsing from the perspective of retrieval-augmented generation.
Motivated by challenges related to the size of commercial database schemata and the deployability of business intelligence solutions, we propose $textASTReS$ that dynamically retrieves input database information.
arXiv Detail & Related papers (2024-07-03T15:55:14Z) - MCS-SQL: Leveraging Multiple Prompts and Multiple-Choice Selection For Text-to-SQL Generation [10.726734105960924]
Large language models (LLMs) have enabled in-context learning (ICL)-based methods that significantly outperform fine-tuning approaches for text-to- tasks.
This study considers the sensitivity of LLMs to the prompts and introduces a novel approach that leverages multiple prompts to explore a broader search space for possible answers.
We establish a new SOTA performance on the BIRD in terms of both the accuracy and efficiency of the generated queries.
arXiv Detail & Related papers (2024-05-13T04:59:32Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
Large language models (LLMs) have emerged as a new paradigm for Text-to- task.
Large language models (LLMs) have emerged as a new paradigm for Text-to- task.
arXiv Detail & Related papers (2023-08-29T14:59:54Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z) - Importance of Synthesizing High-quality Data for Text-to-SQL Parsing [71.02856634369174]
State-of-the-art text-to-weighted algorithms did not further improve on popular benchmarks when trained with augmented synthetic data.
We propose a novel framework that incorporates key relationships from schema, imposes strong typing, and schema-weighted column sampling.
arXiv Detail & Related papers (2022-12-17T02:53:21Z) - Proton: Probing Schema Linking Information from Pre-trained Language
Models for Text-to-SQL Parsing [66.55478402233399]
We propose a framework to elicit relational structures via a probing procedure based on Poincar'e distance metric.
Compared with commonly-used rule-based methods for schema linking, we found that probing relations can robustly capture semantic correspondences.
Our framework sets new state-of-the-art performance on three benchmarks.
arXiv Detail & Related papers (2022-06-28T14:05:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.