Post-Quantum Stealth Address Protocols
- URL: http://arxiv.org/abs/2501.13733v1
- Date: Thu, 23 Jan 2025 15:09:49 GMT
- Title: Post-Quantum Stealth Address Protocols
- Authors: Marija Mikic, Mihajlo Srbakoski, Strahinja Praska,
- Abstract summary: Stealth Address Protocol (SAP) allows users to receive assets through stealth addresses that are unlinkable to their stealth meta-addresses.<n>Most widely used SAP, Dual-Key SAP (DKSAP), and the most performant SAP, Elliptic Curve Pairing Dual-Key SAP (ECPDKSAP), are based on elliptic curve cryptography, which is vulnerable to quantum attacks.<n>In this paper three novel post-quantum SAPs based on lattice-based cryptography are presented.
- Score: 0.21847754147782888
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Stealth Address Protocol (SAP) allows users to receive assets through stealth addresses that are unlinkable to their stealth meta-addresses. The most widely used SAP, Dual-Key SAP (DKSAP), and the most performant SAP, Elliptic Curve Pairing Dual-Key SAP (ECPDKSAP), are based on elliptic curve cryptography, which is vulnerable to quantum attacks. These protocols depend on the elliptic curve discrete logarithm problem, which could be efficiently solved on a sufficiently powerful quantum computer using the Shor algorithm. In this paper three novel post-quantum SAPs based on lattice-based cryptography are presented: LWE SAP, Ring-LWE SAP and Module-LWE SAP. These protocols leverage Learning With Errors (LWE) problem to ensure quantum-resistant privacy. Among them, Module-LWE SAP, which is based on the Kyber key encapsulation mechanism, achieves the best performance and outperforms ECPDKSAP by approximately 66.8% in the scan time of the ephemeral public key registry.
Related papers
- Asymptotically tight security analysis of quantum key distribution based on universal source compression [0.5242869847419834]
Quantum key distribution (QKD) protocols require a finite-size security proof.
PEC approach is one of the general strategies for security analyses.
New PEC-type strategy can provably achieve theally optimal key rate.
arXiv Detail & Related papers (2025-04-10T00:52:13Z) - More Efficient Stealth Address Protocol [0.21847754147782888]
The Stealth Address Protocol (SAP) provides recipient anonymity by generating unlinkable stealth addresses.
Existing SAPs, such as the Dual-Key Stealth Address Protocol and the Curvy Protocol, have shown significant improvements in efficiency, but remain vulnerable to quantum attacks.
We present a novel hybrid SAP that combines the Curvy protocol with the computational advantages of the Module-LWE technique.
arXiv Detail & Related papers (2025-04-09T10:01:24Z) - Fundamental Limits of Hierarchical Secure Aggregation with Cyclic User Association [93.46811590752814]
Hierarchical secure aggregation is motivated by federated learning.
In this paper, we consider HSA with a cyclic association pattern where each user is connected to $B$ consecutive relays.
We propose an efficient aggregation scheme which includes a message design for the inputs inspired by gradient coding.
arXiv Detail & Related papers (2025-03-06T15:53:37Z) - BiCert: A Bilinear Mixed Integer Programming Formulation for Precise Certified Bounds Against Data Poisoning Attacks [62.897993591443594]
Data poisoning attacks pose one of the biggest threats to modern AI systems.<n>Data poisoning attacks pose one of the biggest threats to modern AI systems.<n>Data poisoning attacks pose one of the biggest threats to modern AI systems.
arXiv Detail & Related papers (2024-12-13T14:56:39Z) - Elliptic Curve Pairing Stealth Address Protocols [0.2455468619225742]
Stealth address protocols (SAP) allow users to receive assets via stealth addresses that they do not associate with their stealth meta-addresses.
This paper presents four SA protocols that use elliptic curve pairing as a cryptographic solution.
arXiv Detail & Related papers (2023-12-19T13:07:32Z) - HE-DKSAP: Privacy-Preserving Stealth Address Protocol via Additively Homomorphic Encryption [15.902511928891643]
Homomorphic Encryption-based Dual-Key Stealth Address Protocol (HE-DKSAP)
This paper delves into the core principles of HE-DKSAP, highlighting its capacity to enhance privacy, scalability, and security in programmable blockchains.
arXiv Detail & Related papers (2023-12-17T12:23:49Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Client-Server Identification Protocols with Quantum PUF [1.4174475093445233]
We propose two identification protocols based on the emerging hardware secure solutions, the quantum Physical Unclonable Functions (qPUFs)
The first protocol allows a low-resource party to prove its identity to a high-resource party and in the second protocol, it is vice-versa.
Unlike existing identification protocols based on Quantum Read-out PUFs which rely on the security against a specific family of attacks, our protocols provide provable exponential security against any Quantum Polynomial-Time adversary with resource-efficient parties.
arXiv Detail & Related papers (2020-06-08T12:35:09Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
We present a framework for privacy-preserving inference of sum-product networks (SPNs)
CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs.
arXiv Detail & Related papers (2020-02-03T14:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.