An Empirical Study of Retrieval-Augmented Code Generation: Challenges and Opportunities
- URL: http://arxiv.org/abs/2501.13742v1
- Date: Thu, 23 Jan 2025 15:17:51 GMT
- Title: An Empirical Study of Retrieval-Augmented Code Generation: Challenges and Opportunities
- Authors: Zezhou Yang, Sirong Chen, Cuiyun Gao, Zhenhao Li, Xing Hu, Kui Liu, Xin Xia,
- Abstract summary: Code generation aims to automatically generate code snippets of specific programming language according to natural language descriptions.
One main challenge of pre-trained models for code generation is the semantic gap between natural language requirements and source code.
Retrieval-augmented framework can be leveraged to help understand the requirements and provide guidance for the generation process.
- Score: 19.455889970335967
- License:
- Abstract: Code generation aims to automatically generate code snippets of specific programming language according to natural language descriptions. The continuous advancements in deep learning, particularly pre-trained models, have empowered the code generation task to achieve remarkable performance. One main challenge of pre-trained models for code generation is the semantic gap between natural language requirements and source code. To address the issue, prior studies typically adopt a retrieval-augmented framework for the task, where the similar code snippets collected by a retrieval process can be leveraged to help understand the requirements and provide guidance for the generation process. However, there is a lack of systematic study on the application of this framework for code generation, including the impact of the final generated results and the specific usage of the framework. In this paper, we choose three popular pre-trained code models, namely CodeGen, UniXcoder, and CodeT5, to assess the impact of the quality and utilization of retrieved code on the retrieval-augmented framework. Our analysis shows that the retrieval-augmented framework is beneficial for improving the performance of the existing pre-trained models. We also provide suggestions on the utilization of the retrieval-augmented code generation framework: BM25 and Sequential Integration Fusion are recommended due to their convenience and superior performance. Sketch Filling Fusion, which extracts a sketch of relevant code, could help the model improve its performance further. Additionally, we conduct experiments to investigate the influence of the retrieval-augmented framework on large language models for code generation, showing the effectiveness of the framework, and we discuss the trade-off between performance improvement and computational costs in each phase within the framework.
Related papers
- CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval [103.116634967815]
We introduce CodeXEmbed, a family of large-scale code embedding models ranging from 400M to 7B parameters.
Our novel training pipeline unifies multiple programming languages and transforms various code-related tasks into a common retrieval framework.
Our 7B model sets a new state-of-the-art (SOTA) in code retrieval, outperforming the previous leading model, Voyage-Code, by over 20% on CoIR benchmark.
arXiv Detail & Related papers (2024-11-19T16:54:45Z) - Chain-of-Programming (CoP) : Empowering Large Language Models for Geospatial Code Generation [2.6026969939746705]
This paper proposes a Chain of Programming framework to decompose the code generation process into five steps.
The framework incorporates a shared information pool, knowledge base retrieval, and user feedback mechanisms.
It significantly improves the logical clarity, syntactical correctness, and executability of the generated code.
arXiv Detail & Related papers (2024-11-16T09:20:35Z) - CodeRAG-Bench: Can Retrieval Augment Code Generation? [78.37076502395699]
We conduct a systematic, large-scale analysis of code generation using retrieval-augmented generation.
We first curate a comprehensive evaluation benchmark, CodeRAG-Bench, encompassing three categories of code generation tasks.
We examine top-performing models on CodeRAG-Bench by providing contexts retrieved from one or multiple sources.
arXiv Detail & Related papers (2024-06-20T16:59:52Z) - Repoformer: Selective Retrieval for Repository-Level Code Completion [30.706277772743615]
Recent advances in retrieval-augmented generation (RAG) have initiated a new era in repository-level code completion.
In this paper, we propose a selective RAG framework to avoid retrieval when unnecessary.
We show that our framework is able to accommodate different generation models, retrievers, and programming languages.
arXiv Detail & Related papers (2024-03-15T06:59:43Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVEN is a model that combines retrieval-augmented masked language modeling and prefix language modeling.
Fusion-in-Context Learning enables the model to leverage more in-context examples without requiring additional training.
Our work underscores the potential of retrieval-augmented encoder-decoder language models for in-context learning.
arXiv Detail & Related papers (2023-08-15T17:59:18Z) - Better Language Models of Code through Self-Improvement [18.75015225501755]
We propose a simple data augmentation framework for pre-trained language models for code (PLMCs)
Our framework utilizes knowledge gained during the pre-training and fine-tuning stage to generate pseudo data, which is then used as training data for the next step.
The results show that our framework significantly improves PLMCs' performance in code-related sequence generation tasks.
arXiv Detail & Related papers (2023-04-02T10:59:19Z) - Generation-Augmented Query Expansion For Code Retrieval [51.20943646688115]
We propose a generation-augmented query expansion framework.
Inspired by the human retrieval process - sketching an answer before searching.
We achieve new state-of-the-art results on the CodeSearchNet benchmark.
arXiv Detail & Related papers (2022-12-20T23:49:37Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
We propose a new approach with multimodal contrastive learning and soft data augmentation for code search.
We conduct extensive experiments to evaluate the effectiveness of our approach on a large-scale dataset with six programming languages.
arXiv Detail & Related papers (2022-04-07T08:49:27Z) - ReACC: A Retrieval-Augmented Code Completion Framework [53.49707123661763]
We propose a retrieval-augmented code completion framework, leveraging both lexical copying and referring to code with similar semantics by retrieval.
We evaluate our approach in the code completion task in Python and Java programming languages, achieving a state-of-the-art performance on CodeXGLUE benchmark.
arXiv Detail & Related papers (2022-03-15T08:25:08Z) - Leveraging Code Generation to Improve Code Retrieval and Summarization
via Dual Learning [18.354352985591305]
Code summarization generates brief natural language description given a source code snippet, while code retrieval fetches relevant source code given a natural language query.
Recent studies have combined these two tasks to improve their performance.
We propose a novel end-to-end model for the two tasks by introducing an additional code generation task.
arXiv Detail & Related papers (2020-02-24T12:26:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.