Enhancing Biomedical Relation Extraction with Directionality
- URL: http://arxiv.org/abs/2501.14079v1
- Date: Thu, 23 Jan 2025 20:36:11 GMT
- Title: Enhancing Biomedical Relation Extraction with Directionality
- Authors: Po-Ting Lai, Chih-Hsuan Wei, Shubo Tian, Robert Leaman, Zhiyong Lu,
- Abstract summary: We propose a novel multi-task language model with soft-prompt learning to jointly identify the relationship, novel findings, and entity roles.
Our results in-clude an enriched BioRED corpus with 10,864 directionality annotations.
- Score: 4.0241840878351764
- License:
- Abstract: Biological relation networks contain rich information for understanding the biological mechanisms behind the relationship of entities such as genes, proteins, diseases, and chemicals. The vast growth of biomedical literature poses significant challenges updating the network knowledge. The recent Biomedical Relation Extraction Dataset (BioRED) provides valuable manual annotations, facilitating the develop-ment of machine-learning and pre-trained language model approaches for automatically identifying novel document-level (inter-sentence context) relationships. Nonetheless, its annotations lack directionality (subject/object) for the entity roles, essential for studying complex biological networks. Herein we annotate the entity roles of the relationships in the BioRED corpus and subsequently propose a novel multi-task language model with soft-prompt learning to jointly identify the relationship, novel findings, and entity roles. Our results in-clude an enriched BioRED corpus with 10,864 directionality annotations. Moreover, our proposed method outperforms existing large language models such as the state-of-the-art GPT-4 and Llama-3 on two benchmarking tasks. Our source code and dataset are available at https://github.com/ncbi-nlp/BioREDirect.
Related papers
- Biomedical Relation Extraction via Adaptive Document-Relation Cross-Mapping and Concept Unique Identifier [35.79876359248485]
Document-Level Biomedical Relation Extraction (Bio-RE) aims to identify relations between biomedical entities within extensive texts.
Previous methods often overlook the incompleteness of documents and lack the integration of external knowledge.
Recent advancements in large language models (LLMs) have inspired us to explore all the above issues for document-level Bio-RE.
arXiv Detail & Related papers (2025-01-09T11:19:40Z) - Leveraging Biomolecule and Natural Language through Multi-Modal
Learning: A Survey [75.47055414002571]
The integration of biomolecular modeling with natural language (BL) has emerged as a promising interdisciplinary area at the intersection of artificial intelligence, chemistry and biology.
We provide an analysis of recent advancements achieved through cross modeling of biomolecules and natural language.
arXiv Detail & Related papers (2024-03-03T14:59:47Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
We study the performance of large language models (LLMs) on a wide spectrum of crucial bioinformatics tasks.
These tasks include the identification of potential coding regions, extraction of named entities for genes and proteins, detection of antimicrobial and anti-cancer peptides, molecular optimization, and resolution of educational bioinformatics problems.
Our findings indicate that, given appropriate prompts, LLMs like GPT variants can successfully handle most of these tasks.
arXiv Detail & Related papers (2024-02-21T11:27:31Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - Improving Biomedical Abstractive Summarisation with Knowledge
Aggregation from Citation Papers [24.481854035628434]
Existing language models struggle to generate technical summaries that are on par with those produced by biomedical experts.
We propose a novel attention-based citation aggregation model that integrates domain-specific knowledge from citation papers.
Our model outperforms state-of-the-art approaches and achieves substantial improvements in abstractive biomedical text summarisation.
arXiv Detail & Related papers (2023-10-24T09:56:46Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
This paper proposes EBOCA, an ontology that describes (i) biomedical domain concepts and associations between them, and (ii) evidences supporting these associations.
Test data coming from a subset of DISNET and automatic association extractions from texts has been transformed to create a Knowledge Graph that can be used in real scenarios.
arXiv Detail & Related papers (2022-08-01T18:47:03Z) - BigBIO: A Framework for Data-Centric Biomedical Natural Language
Processing [13.30221348538759]
We introduce BigBIO, a community library of 126+ biomedical NLP datasets.
BigBIO facilitates reproducible meta-dataset curation via programmatic access to datasets and their metadata.
We discuss our process for task schema, data auditing, contribution guidelines, and outline two illustrative use cases.
arXiv Detail & Related papers (2022-06-30T07:15:45Z) - BioIE: Biomedical Information Extraction with Multi-head Attention
Enhanced Graph Convolutional Network [9.227487525657901]
We propose Biomedical Information Extraction, a hybrid neural network to extract relations from biomedical text and unstructured medical reports.
We evaluate our model on two major biomedical relationship extraction tasks, chemical-disease relation and chemical-protein interaction, and a cross-hospital pan-cancer pathology report corpus.
arXiv Detail & Related papers (2021-10-26T13:19:28Z) - Discovering Drug-Target Interaction Knowledge from Biomedical Literature [107.98712673387031]
The Interaction between Drugs and Targets (DTI) in human body plays a crucial role in biomedical science and applications.
As millions of papers come out every year in the biomedical domain, automatically discovering DTI knowledge from literature becomes an urgent demand in the industry.
We explore the first end-to-end solution for this task by using generative approaches.
We regard the DTI triplets as a sequence and use a Transformer-based model to directly generate them without using the detailed annotations of entities and relations.
arXiv Detail & Related papers (2021-09-27T17:00:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.