A Zero-Shot LLM Framework for Automatic Assignment Grading in Higher Education
- URL: http://arxiv.org/abs/2501.14305v1
- Date: Fri, 24 Jan 2025 08:01:41 GMT
- Title: A Zero-Shot LLM Framework for Automatic Assignment Grading in Higher Education
- Authors: Calvin Yeung, Jeff Yu, King Chau Cheung, Tat Wing Wong, Chun Man Chan, Kin Chi Wong, Keisuke Fujii,
- Abstract summary: We propose a Zero-Shot Large Language Model (LLM)-Based Automated Assignment Grading (AAG) system.
This framework leverages prompt engineering to evaluate both computational and explanatory student responses without requiring additional training or fine-tuning.
The AAG system delivers tailored feedback that highlights individual strengths and areas for improvement, thereby enhancing student learning outcomes.
- Score: 0.6141800972050401
- License:
- Abstract: Automated grading has become an essential tool in education technology due to its ability to efficiently assess large volumes of student work, provide consistent and unbiased evaluations, and deliver immediate feedback to enhance learning. However, current systems face significant limitations, including the need for large datasets in few-shot learning methods, a lack of personalized and actionable feedback, and an overemphasis on benchmark performance rather than student experience. To address these challenges, we propose a Zero-Shot Large Language Model (LLM)-Based Automated Assignment Grading (AAG) system. This framework leverages prompt engineering to evaluate both computational and explanatory student responses without requiring additional training or fine-tuning. The AAG system delivers tailored feedback that highlights individual strengths and areas for improvement, thereby enhancing student learning outcomes. Our study demonstrates the system's effectiveness through comprehensive evaluations, including survey responses from higher education students that indicate significant improvements in motivation, understanding, and preparedness compared to traditional grading methods. The results validate the AAG system's potential to transform educational assessment by prioritizing learning experiences and providing scalable, high-quality feedback.
Related papers
- ReVISE: Learning to Refine at Test-Time via Intrinsic Self-Verification [53.80183105328448]
Refine via Intrinsic Self-Verification (ReVISE) is an efficient framework that enables LLMs to self-correct their outputs through self-verification.
Our experiments on various reasoning tasks demonstrate that ReVISE achieves efficient self-correction and significantly improves reasoning performance.
arXiv Detail & Related papers (2025-02-20T13:50:02Z) - An Automated Explainable Educational Assessment System Built on LLMs [12.970776782360366]
AERA Chat is an automated educational assessment system designed for interactive and visual evaluations of student responses.
Our system allows users to input questions and student answers, providing educators and researchers with insights into assessment accuracy.
arXiv Detail & Related papers (2024-12-17T23:29:18Z) - Benchmarking Vision Language Model Unlearning via Fictitious Facial Identity Dataset [94.13848736705575]
We introduce Facial Identity Unlearning Benchmark (FIUBench), a novel VLM unlearning benchmark designed to robustly evaluate the effectiveness of unlearning algorithms.
We apply a two-stage evaluation pipeline that is designed to precisely control the sources of information and their exposure levels.
Through the evaluation of four baseline VLM unlearning algorithms within FIUBench, we find that all methods remain limited in their unlearning performance.
arXiv Detail & Related papers (2024-11-05T23:26:10Z) - Automated Feedback in Math Education: A Comparative Analysis of LLMs for Open-Ended Responses [0.0]
This study aims to explore the potential of Large Language Models (LLMs) in facilitating automated feedback in math education.
We employ Mistral, a version of Llama catered to math, and fine-tune this model for evaluating student responses by leveraging a dataset of student responses and teacher-written feedback for middle-school math problems.
We evaluate the model's performance in scoring accuracy and the quality of feedback by utilizing judgments from 2 teachers.
arXiv Detail & Related papers (2024-10-29T16:57:45Z) - Personalised Feedback Framework for Online Education Programmes Using Generative AI [0.0]
This paper presents an alternative feedback framework which extends the capabilities of ChatGPT by integrating embeddings.
As part of the study, we proposed and developed a proof of concept solution, achieving an efficacy rate of 90% and 100% for open-ended and multiple-choice questions.
arXiv Detail & Related papers (2024-10-14T22:35:40Z) - "I understand why I got this grade": Automatic Short Answer Grading with Feedback [36.74896284581596]
We present a dataset of 5.8k student answers accompanied by reference answers and questions for the Automatic Short Answer Grading (ASAG) task.
The EngSAF dataset is meticulously curated to cover a diverse range of subjects, questions, and answer patterns from multiple engineering domains.
arXiv Detail & Related papers (2024-06-30T15:42:18Z) - Lessons Learned from Designing an Open-Source Automated Feedback System
for STEM Education [5.326069675013602]
We present RATsApp, an open-source automated feedback system (AFS) that incorporates research-based features such as formative feedback.
The system focuses on core STEM competencies such as mathematical competence, representational competence, and data literacy.
As an open-source platform, RATsApp encourages public contributions to its ongoing development, fostering a collaborative approach to improve educational tools.
arXiv Detail & Related papers (2024-01-19T07:13:07Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
We propose a new task, named Goal-oriented Intelligent Tutoring Systems (GITS)
GITS aims to enable the student's mastery of a designated concept by strategically planning a customized sequence of exercises and assessment.
We propose a novel graph-based reinforcement learning framework, named Planning-Assessment-Interaction (PAI)
arXiv Detail & Related papers (2023-12-03T12:37:16Z) - Enabling Language Models to Implicitly Learn Self-Improvement [49.16868302881804]
Large Language Models (LLMs) have demonstrated remarkable capabilities in open-ended text generation tasks.
We propose an ImPlicit Self-ImprovemenT (PIT) framework that implicitly learns the improvement goal from human preference data.
arXiv Detail & Related papers (2023-10-02T04:29:40Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
This work explores the development of a full-fledged intelligent tutoring system powered by state-of-the-art large language models (LLMs)
The system is into three inter-connected core processes-interaction, reflection, and reaction.
Each process is implemented by chaining LLM-powered tools along with dynamically updated memory modules.
arXiv Detail & Related papers (2023-09-15T02:42:03Z) - Persistent Reinforcement Learning via Subgoal Curricula [114.83989499740193]
Value-accelerated Persistent Reinforcement Learning (VaPRL) generates a curriculum of initial states.
VaPRL reduces the interventions required by three orders of magnitude compared to episodic reinforcement learning.
arXiv Detail & Related papers (2021-07-27T16:39:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.