Correlation-Based Band Selection for Hyperspectral Image Classification
- URL: http://arxiv.org/abs/2501.14338v1
- Date: Fri, 24 Jan 2025 09:03:27 GMT
- Title: Correlation-Based Band Selection for Hyperspectral Image Classification
- Authors: Dibyabha Deb, Ujjwal Verma,
- Abstract summary: We present a correlation-based band selection approach for hyperspectral image classification.<n>Our approach calculates the average correlation between bands using correlation coefficients to identify the relationships among different bands.<n>This allows us to isolate and retain bands that exhibit lower inter-band dependencies, ensuring that the selected bands provide diverse and non-redundant information.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral images offer extensive spectral information about ground objects across multiple spectral bands. However, the large volume of data can pose challenges during processing. Typically, adjacent bands in hyperspectral data are highly correlated, leading to the use of only a few selected bands for various applications. In this work, we present a correlation-based band selection approach for hyperspectral image classification. Our approach calculates the average correlation between bands using correlation coefficients to identify the relationships among different bands. Afterward, we select a subset of bands by analyzing the average correlation and applying a threshold-based method. This allows us to isolate and retain bands that exhibit lower inter-band dependencies, ensuring that the selected bands provide diverse and non-redundant information. We evaluate our proposed approach on two standard benchmark datasets: Pavia University (PA) and Salinas Valley (SA), focusing on image classification tasks. The experimental results demonstrate that our method performs competitively with other standard band selection approaches.
Related papers
- Multi-Teacher Multi-Objective Meta-Learning for Zero-Shot Hyperspectral Band Selection [50.30291173608449]
We propose a novel multi-objective meta-learning network (M$3$BS) for zero-shot hyperspectral band selection.
In M$3$BS, a generalizable graph convolution network (GCN) is constructed to generate dataset-agnostic base.
The acquired meta-knowledge can be directly transferred to unseen datasets without any retraining or fine-tuning.
arXiv Detail & Related papers (2024-06-12T07:13:31Z) - Embedded Hyperspectral Band Selection with Adaptive Optimization for Image Semantic Segmentation [0.0]
This paper introduces a pioneering approach for hyperspectral band selection that offers an embedded solution.<n>Our proposed method, embedded hyperspectral band selection (EHBS), excels in selecting the best bands without needing prior processing.<n>We conduct experiments on two distinct semantic-segmentation hyperspectral benchmark datasets, demonstrating their superiority in terms of accuracy and ease of use.
arXiv Detail & Related papers (2024-01-21T07:48:39Z) - One-shot neural band selection for spectral recovery [15.565913045545066]
We present a novel one-shot Neural Band Selection (NBS) framework for spectral recovery.
Our NBS is based on the continuous relaxation of the band selection process, thus allowing efficient band search using gradient descent.
Our code will be publicly available.
arXiv Detail & Related papers (2023-05-16T07:34:03Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - Category-Adaptive Label Discovery and Noise Rejection for Multi-label
Image Recognition with Partial Positive Labels [78.88007892742438]
Training multi-label models with partial positive labels (MLR-PPL) attracts increasing attention.
Previous works regard unknown labels as negative and adopt traditional MLR algorithms.
We propose to explore semantic correlation among different images to facilitate the MLR-PPL task.
arXiv Detail & Related papers (2022-11-15T02:11:20Z) - A new band selection approach based on information theory and support
vector machine for hyperspectral images reduction and classification [0.0]
spectral band selection is an essential step for removing the irrelevant, noisy and redundant bands.
We propose a new strategy based on joint mutual information to measure the statistical dependence and correlation between the selected bands.
The proposed filter approach is compared to an effective reproduced filters based on mutual information.
arXiv Detail & Related papers (2022-10-26T10:54:23Z) - A novel filter based on three variables mutual information for
dimensionality reduction and classification of hyperspectral images [0.0]
Band selection filter based on "Mutual Information" is a common technique for dimensionality reduction.
A new filter approach based on three variables mutual information is developed in order to measure band correlation for classification.
The proposed approach is very competitive, effective and outperforms the reproduced filter strategy performance.
arXiv Detail & Related papers (2022-10-26T10:29:00Z) - Anomaly Clustering: Grouping Images into Coherent Clusters of Anomaly
Types [60.45942774425782]
We introduce anomaly clustering, whose goal is to group data into coherent clusters of anomaly types.
This is different from anomaly detection, whose goal is to divide anomalies from normal data.
We present a simple yet effective clustering framework using a patch-based pretrained deep embeddings and off-the-shelf clustering methods.
arXiv Detail & Related papers (2021-12-21T23:11:33Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
We propose a simple method to derive 2D representation from detection scores produced by an arbitrary set of binary classifiers.
Based upon rank correlations, our method facilitates a visual comparison of classifiers with arbitrary scores.
While the approach is fully versatile and can be applied to any detection task, we demonstrate the method using scores produced by automatic speaker verification and voice anti-spoofing systems.
arXiv Detail & Related papers (2021-06-11T13:03:33Z) - Hyperspectral Band Selection for Multispectral Image Classification with
Convolutional Networks [0.0]
We propose a novel band selection method to select a reduced set of wavelengths from hyperspectral images.
We show that our method produces more suitable results for a multispectral sensor design.
arXiv Detail & Related papers (2021-06-01T17:24:35Z) - Few-shot Learning for Multi-label Intent Detection [59.66787898744991]
State-of-the-art work estimates label-instance relevance scores and uses a threshold to select multiple associated intent labels.
Experiments on two datasets show that the proposed model significantly outperforms strong baselines in both one-shot and five-shot settings.
arXiv Detail & Related papers (2020-10-11T14:42:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.