Scene Understanding Enabled Semantic Communication with Open Channel Coding
- URL: http://arxiv.org/abs/2501.14520v1
- Date: Fri, 24 Jan 2025 14:23:31 GMT
- Title: Scene Understanding Enabled Semantic Communication with Open Channel Coding
- Authors: Zhe Xiang, Fei Yu, Quan Deng, Yuandi Li, Zhiguo Wan,
- Abstract summary: Traditional semantic communication faces limitations, including static coding strategies, poor generalization, and reliance on task-specific knowledge bases that hinder adaptability.
We propose a novel system combining scene understanding, Large Language Models (LLMs), and open channel coding, named textbfOpenSC.
Experimental results show significant improvements in both semantic understanding and efficiency, advancing the potential of adaptive, generalizable semantic communication in 6G networks.
- Score: 3.255136948268739
- License:
- Abstract: As communication systems transition from symbol transmission to conveying meaningful information, sixth-generation (6G) networks emphasize semantic communication. This approach prioritizes high-level semantic information, improving robustness and reducing redundancy across modalities like text, speech, and images. However, traditional semantic communication faces limitations, including static coding strategies, poor generalization, and reliance on task-specific knowledge bases that hinder adaptability. To overcome these challenges, we propose a novel system combining scene understanding, Large Language Models (LLMs), and open channel coding, named \textbf{OpenSC}. Traditional systems rely on fixed domain-specific knowledge bases, limiting their ability to generalize. Our open channel coding approach leverages shared, publicly available knowledge, enabling flexible, adaptive encoding. This dynamic system reduces reliance on static task-specific data, enhancing adaptability across diverse tasks and environments. Additionally, we use scene graphs for structured semantic encoding, capturing object relationships and context to improve tasks like Visual Question Answering (VQA). Our approach selectively encodes key semantic elements, minimizing redundancy and improving transmission efficiency. Experimental results show significant improvements in both semantic understanding and efficiency, advancing the potential of adaptive, generalizable semantic communication in 6G networks.
Related papers
- Take What You Need: Flexible Multi-Task Semantic Communications with Channel Adaptation [51.53221300103261]
This article introduces a novel channel-adaptive and multi-task-aware semantic communication framework based on a masked auto-encoder architecture.
A channel-aware extractor is employed to dynamically select relevant information in response to real-time channel conditions.
Experimental results demonstrate the superior performance of our framework compared to conventional methods in tasks such as image reconstruction and object detection.
arXiv Detail & Related papers (2025-02-12T09:01:25Z) - Editable-DeepSC: Reliable Cross-Modal Semantic Communications for Facial Editing [45.66741599550691]
We propose Editable-DeepSC, a novel cross-modal semantic communication approach for facial editing.
Experiments indicate that Editable-DeepSC can achieve superior editings while significantly saving the transmission bandwidth.
arXiv Detail & Related papers (2024-11-24T04:07:33Z) - Trustworthy Image Semantic Communication with GenAI: Explainablity, Controllability, and Efficiency [59.15544887307901]
Image semantic communication (ISC) has garnered significant attention for its potential to achieve high efficiency in visual content transmission.
Existing ISC systems based on joint source-channel coding face challenges in interpretability, operability, and compatibility.
We propose a novel trustworthy ISC framework that employs Generative Artificial Intelligence (GenAI) for multiple downstream inference tasks.
arXiv Detail & Related papers (2024-08-07T14:32:36Z) - Dynamic Relative Representations for Goal-Oriented Semantic Communications [13.994922919058922]
semantic and effectiveness aspects of communications will play a fundamental role in 6G wireless networks.
In latent space communication, this challenge manifests as misalignment within high-dimensional representations where deep neural networks encode data.
This paper presents a novel framework for goal-oriented semantic communication, leveraging relative representations to mitigate semantic mismatches.
arXiv Detail & Related papers (2024-03-25T17:48:06Z) - Generative AI-aided Joint Training-free Secure Semantic Communications
via Multi-modal Prompts [89.04751776308656]
This paper proposes a GAI-aided SemCom system with multi-model prompts for accurate content decoding.
In response to security concerns, we introduce the application of covert communications aided by a friendly jammer.
arXiv Detail & Related papers (2023-09-05T23:24:56Z) - Reasoning over the Air: A Reasoning-based Implicit Semantic-Aware
Communication Framework [124.6509194665514]
A novel implicit semantic-aware communication (iSAC) architecture is proposed for representing, communicating, and interpreting the implicit semantic meaning between source and destination users.
A projection-based semantic encoder is proposed to convert the high-dimensional graphical representation of explicit semantics into a low-dimensional semantic constellation space for efficient physical channel transmission.
A generative adversarial imitation learning-based solution, called G-RML, is proposed to enable the destination user to learn and imitate the implicit semantic reasoning process of source user.
arXiv Detail & Related papers (2023-06-20T01:32:27Z) - Imitation Learning-based Implicit Semantic-aware Communication Networks:
Multi-layer Representation and Collaborative Reasoning [68.63380306259742]
Despite its promising potential, semantic communications and semantic-aware networking are still at their infancy.
We propose a novel reasoning-based implicit semantic-aware communication network architecture that allows multiple tiers of CDC and edge servers to collaborate.
We introduce a new multi-layer representation of semantic information taking into consideration both the hierarchical structure of implicit semantics as well as the personalized inference preference of individual users.
arXiv Detail & Related papers (2022-10-28T13:26:08Z) - Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic
Communication [85.06664206117088]
6G networks must consider semantics and effectiveness (at end-user) of the data transmission.
NeSy AI is proposed as a pillar for learning causal structure behind the observed data.
GFlowNet is leveraged for the first time in a wireless system to learn the probabilistic structure which generates the data.
arXiv Detail & Related papers (2022-05-22T07:11:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.