Inverse Evolution Data Augmentation for Neural PDE Solvers
- URL: http://arxiv.org/abs/2501.14604v1
- Date: Fri, 24 Jan 2025 16:20:11 GMT
- Title: Inverse Evolution Data Augmentation for Neural PDE Solvers
- Authors: Chaoyu Liu, Chris Budd, Carola-Bibiane Schönlieb,
- Abstract summary: Training neural operators requires a large amount of training data to ensure accuracy and generalization.
We propose a novel data augmentation method specifically designed for training neural operators on evolution equations.
- Score: 10.111901389604423
- License:
- Abstract: Neural networks have emerged as promising tools for solving partial differential equations (PDEs), particularly through the application of neural operators. Training neural operators typically requires a large amount of training data to ensure accuracy and generalization. In this paper, we propose a novel data augmentation method specifically designed for training neural operators on evolution equations. Our approach utilizes insights from inverse processes of these equations to efficiently generate data from random initialization that are combined with original data. To further enhance the accuracy of the augmented data, we introduce high-order inverse evolution schemes. These schemes consist of only a few explicit computation steps, yet the resulting data pairs can be proven to satisfy the corresponding implicit numerical schemes. In contrast to traditional PDE solvers that require small time steps or implicit schemes to guarantee accuracy, our data augmentation method employs explicit schemes with relatively large time steps, thereby significantly reducing computational costs. Accuracy and efficacy experiments confirm the effectiveness of our approach. Additionally, we validate our approach through experiments with the Fourier Neural Operator and UNet on three common evolution equations that are Burgers' equation, the Allen-Cahn equation and the Navier-Stokes equation. The results demonstrate a significant improvement in the performance and robustness of the Fourier Neural Operator when coupled with our inverse evolution data augmentation method.
Related papers
- Equation discovery framework EPDE: Towards a better equation discovery [50.79602839359522]
We enhance the EPDE algorithm -- an evolutionary optimization-based discovery framework.
Our approach generates terms using fundamental building blocks such as elementary functions and individual differentials.
We validate our algorithm's noise resilience and overall performance by comparing its results with those from the state-of-the-art equation discovery framework SINDy.
arXiv Detail & Related papers (2024-12-28T15:58:44Z) - DeepONet as a Multi-Operator Extrapolation Model: Distributed Pretraining with Physics-Informed Fine-Tuning [6.635683993472882]
We propose a novel fine-tuning method to achieve multi-operator learning.
Our approach combines distributed learning to integrate data from various operators in pre-training, while physics-informed methods enable zero-shot fine-tuning.
arXiv Detail & Related papers (2024-11-11T18:58:46Z) - Parametric Learning of Time-Advancement Operators for Unstable Flame
Evolution [0.0]
This study investigates the application of machine learning to learn time-advancement operators for parametric partial differential equations (PDEs)
Our focus is on extending existing operator learning methods to handle additional inputs representing PDE parameters.
The goal is to create a unified learning approach that accurately predicts short-term solutions and provides robust long-term statistics.
arXiv Detail & Related papers (2024-02-14T18:12:42Z) - PICL: Physics Informed Contrastive Learning for Partial Differential Equations [7.136205674624813]
We develop a novel contrastive pretraining framework that improves neural operator generalization across multiple governing equations simultaneously.
A combination of physics-informed system evolution and latent-space model output are anchored to input data and used in our distance function.
We find that physics-informed contrastive pretraining improves accuracy for the Fourier Neural Operator in fixed-future and autoregressive rollout tasks for the 1D and 2D Heat, Burgers', and linear advection equations.
arXiv Detail & Related papers (2024-01-29T17:32:22Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
We propose a novel equation discovery method based on Kernel learning and BAyesian Spike-and-Slab priors (KBASS)
We use kernel regression to estimate the target function, which is flexible, expressive, and more robust to data sparsity and noises.
We develop an expectation-propagation expectation-maximization algorithm for efficient posterior inference and function estimation.
arXiv Detail & Related papers (2023-10-09T03:55:09Z) - Guaranteed Approximation Bounds for Mixed-Precision Neural Operators [83.64404557466528]
We build on intuition that neural operator learning inherently induces an approximation error.
We show that our approach reduces GPU memory usage by up to 50% and improves throughput by 58% with little or no reduction in accuracy.
arXiv Detail & Related papers (2023-07-27T17:42:06Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Variational operator learning: A unified paradigm marrying training
neural operators and solving partial differential equations [9.148052787201797]
We propose a novel paradigm that provides a unified framework of training neural operators and solving PDEs with the variational form.
With a label-free training set and a 5-label-only shift set, VOL learns solution operators with its test errors decreasing in a power law with respect to the amount of unlabeled data.
arXiv Detail & Related papers (2023-04-09T13:20:19Z) - Physics-guided Data Augmentation for Learning the Solution Operator of
Linear Differential Equations [2.1850269949775663]
We propose a physics-guided data augmentation (PGDA) method to improve the accuracy and generalization of neural operator models.
We demonstrate the advantage of PGDA on a variety of linear differential equations, showing that PGDA can improve the sample complexity and is robust to distributional shift.
arXiv Detail & Related papers (2022-12-08T06:29:15Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
We propose to enhance the supervised signal in learning dynamics by pre-training a neural differential operator (NDO)
NDO is pre-trained on a class of symbolic functions, and it learns the mapping between the trajectory samples of these functions to their derivatives.
We provide theoretical guarantee on that the output of NDO can well approximate the ground truth derivatives by proper tuning the complexity of the library.
arXiv Detail & Related papers (2021-06-08T08:04:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.