A Paired Autoencoder Framework for Inverse Problems via Bayes Risk Minimization
- URL: http://arxiv.org/abs/2501.14636v1
- Date: Fri, 24 Jan 2025 16:55:36 GMT
- Title: A Paired Autoencoder Framework for Inverse Problems via Bayes Risk Minimization
- Authors: Emma Hart, Julianne Chung, Matthias Chung,
- Abstract summary: We consider a paired autoencoder framework, where two autoencoders are used to efficiently represent the input and target spaces separately.<n>We focus on interpretations using Bayes risk and empirical Bayes risk minimization.<n>We show that cheaply computable evaluation metrics are available through this framework and can be used to predict whether the solution for a new sample should be predicted well.
- Score: 0.1843404256219181
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we describe a new data-driven approach for inverse problems that exploits technologies from machine learning, in particular autoencoder network structures. We consider a paired autoencoder framework, where two autoencoders are used to efficiently represent the input and target spaces separately and optimal mappings are learned between latent spaces, thus enabling forward and inverse surrogate mappings. We focus on interpretations using Bayes risk and empirical Bayes risk minimization, and we provide various theoretical results and connections to existing works on low-rank matrix approximations. Similar to end-to-end approaches, our paired approach creates a surrogate model for forward propagation and regularized inversion. However, our approach outperforms existing approaches in scenarios where training data for unsupervised learning are readily available but training pairs for supervised learning are scarce. Furthermore, we show that cheaply computable evaluation metrics are available through this framework and can be used to predict whether the solution for a new sample should be predicted well.
Related papers
- Good Things Come in Pairs: Paired Autoencoders for Inverse Problems [0.0]
We focus on the emphpaired autoencoder framework, which has proven to be a powerful tool for solving inverse problems in scientific computing.<n>We illustrate the advantages of this approach through numerical experiments, including seismic imaging and classical inpainting: nonlinear and linear inverse problems.
arXiv Detail & Related papers (2025-05-10T07:31:09Z) - Lie Detector: Unified Backdoor Detection via Cross-Examination Framework [68.45399098884364]
We propose a unified backdoor detection framework in the semi-honest setting.
Our method achieves superior detection performance, improving accuracy by 5.4%, 1.6%, and 11.9% over SoTA baselines.
Notably, it is the first to effectively detect backdoors in multimodal large language models.
arXiv Detail & Related papers (2025-03-21T06:12:06Z) - Surprisal Driven $k$-NN for Robust and Interpretable Nonparametric
Learning [1.4293924404819704]
We shed new light on the traditional nearest neighbors algorithm from the perspective of information theory.
We propose a robust and interpretable framework for tasks such as classification, regression, density estimation, and anomaly detection using a single model.
Our work showcases the architecture's versatility by achieving state-of-the-art results in classification and anomaly detection.
arXiv Detail & Related papers (2023-11-17T00:35:38Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - A Novel Plug-and-Play Approach for Adversarially Robust Generalization [38.72514422694518]
We propose a robust framework that employs adversarially robust training to safeguard the ML models against perturbed testing data.
Our contributions can be seen from both computational and statistical perspectives.
arXiv Detail & Related papers (2022-08-19T17:02:55Z) - Decorrelative Network Architecture for Robust Electrocardiogram
Classification [4.808817930937323]
It is not possible to train networks that are accurate in all scenarios.
Deep learning methods sample the model parameter space to estimate uncertainty.
These parameters are often subject to the same vulnerabilities, which can be exploited by adversarial attacks.
We propose a novel ensemble approach based on feature decorrelation and Fourier partitioning for teaching networks diverse complementary features.
arXiv Detail & Related papers (2022-07-19T02:36:36Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Autoencoder Attractors for Uncertainty Estimation [13.618797548020462]
We propose a novel approach for uncertainty estimation based on autoencoder models.
We evaluate our approach on several dataset combinations as well as on an industrial application for occupant classification in the vehicle interior.
arXiv Detail & Related papers (2022-04-01T12:10:06Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
In safety-critical machine learning applications, it is crucial to defend models against adversarial attacks.
It is important to provide provable guarantees for deep learning models against semantically meaningful input transformations.
We propose a new universal probabilistic certification approach based on Chernoff-Cramer bounds.
arXiv Detail & Related papers (2021-09-22T12:46:04Z) - Adversarial Examples for Unsupervised Machine Learning Models [71.81480647638529]
Adrial examples causing evasive predictions are widely used to evaluate and improve the robustness of machine learning models.
We propose a framework of generating adversarial examples for unsupervised models and demonstrate novel applications to data augmentation.
arXiv Detail & Related papers (2021-03-02T17:47:58Z) - Detection of Insider Attacks in Distributed Projected Subgradient
Algorithms [11.096339082411882]
We show that a general neural network is particularly suitable for detecting and localizing malicious agents.
We propose to adopt one of the state-of-art approaches in federated learning, i.e., a collaborative peer-to-peer machine learning protocol.
In our simulations, a least-squared problem is considered to verify the feasibility and effectiveness of AI-based methods.
arXiv Detail & Related papers (2021-01-18T08:01:06Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.