AI-driven Wireless Positioning: Fundamentals, Standards, State-of-the-art, and Challenges
- URL: http://arxiv.org/abs/2501.14970v1
- Date: Fri, 24 Jan 2025 23:09:11 GMT
- Title: AI-driven Wireless Positioning: Fundamentals, Standards, State-of-the-art, and Challenges
- Authors: Guangjin Pan, Yuan Gao, Yilin Gao, Zhiyong Zhong, Xiaoyu Yang, Xinyu Guo, Shugong Xu,
- Abstract summary: AI/machine learning (ML)-based positioning is becoming a key technology to overcome the limitations of traditional methods.<n>We focus on state-of-the-art (SOTA) research in AI-based line-of-sight (LOS)/non-line-of-sight (NLOS) detection, time of arrival (TOA)/time difference of arrival (TDOA) estimation, and angle estimation techniques.
- Score: 14.624642715139965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wireless positioning technologies hold significant value for applications in autonomous driving, extended reality (XR), unmanned aerial vehicles (UAVs), and more. With the advancement of artificial intelligence (AI), leveraging AI to enhance positioning accuracy and robustness has emerged as a field full of potential. Driven by the requirements and functionalities defined in the 3rd Generation Partnership Project (3GPP) standards, AI/machine learning (ML)-based positioning is becoming a key technology to overcome the limitations of traditional methods. This paper begins with an introduction to the fundamentals of AI and wireless positioning, covering AI models, algorithms, positioning applications, emerging wireless technologies, and the basics of positioning techniques. Subsequently, focusing on standardization progress, we provide a comprehensive review of the evolution of 3GPP positioning standards, with an emphasis on the integration of AI/ML technologies in recent and upcoming releases. Based on the AI/ML-assisted positioning and direct AI/ML positioning schemes outlined in the standards, we conduct an in-depth investigation of related research. we focus on state-of-the-art (SOTA) research in AI-based line-of-sight (LOS)/non-line-of-sight (NLOS) detection, time of arrival (TOA)/time difference of arrival (TDOA) estimation, and angle estimation techniques. For Direct AI/ML Positioning, we explore SOTA advancements in fingerprint-based positioning, knowledge-assisted AI positioning, and channel charting-based positioning. Furthermore, we introduce publicly available datasets for wireless positioning and conclude by summarizing the challenges and opportunities of AI-driven wireless positioning.
Related papers
- AI Safety Assurance for Automated Vehicles: A Survey on Research, Standardization, Regulation [13.059865395440603]
Assuring safety of artificial intelligence applied to safety-critical systems is of paramount importance.
Research on safeguarding AI is being conducted in parallel to AI standardization and regulation.
arXiv Detail & Related papers (2025-04-25T13:14:06Z) - General Scales Unlock AI Evaluation with Explanatory and Predictive Power [57.7995945974989]
benchmarking has guided progress in AI, but it has offered limited explanatory and predictive power for general-purpose AI systems.
We introduce general scales for AI evaluation that can explain what common AI benchmarks really measure.
Our fully-automated methodology builds on 18 newly-crafted rubrics that place instance demands on general scales that do not saturate.
arXiv Detail & Related papers (2025-03-09T01:13:56Z) - Empowering Edge Intelligence: A Comprehensive Survey on On-Device AI Models [16.16798813072285]
The rapid advancement of artificial intelligence (AI) technologies has led to an increasing deployment of AI models on edge and terminal devices.
This survey comprehensively explores the current state, technical challenges, and future trends of on-device AI models.
arXiv Detail & Related papers (2025-03-08T02:59:51Z) - Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities [156.35699837919677]
This paper presents a comprehensive overview of AI and communication for 6G networks.<n>We first review the driving factors behind incorporating AI into wireless communications, as well as the vision for the convergence of AI and 6G.<n>The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks.
arXiv Detail & Related papers (2024-12-19T05:36:34Z) - AI Horizon Scanning -- White Paper p3395, IEEE-SA. Part III: Technology Watch: a selection of key developments, emerging technologies, and industry trends in Artificial Intelligence [0.3277163122167434]
Generative Artificial Intelligence (AI) technologies are in a phase of unprecedented rapid development following the landmark release of Chat-GPT.
As the deployment of AI products rises geometrically, considerable attention is being given to the threats and opportunities that AI technologies offer.
This manuscript is the third of a series of White Papers informing the development of IEEE-SA's p3995 it Standard for the Implementation of Safeguards, Controls, and Preventive Techniques for Artificial Intelligence Models'
arXiv Detail & Related papers (2024-11-05T19:04:42Z) - On the Combination of AI and Wireless Technologies: 3GPP Standardization Progress [13.799195145459972]
Combing Artificial Intelligence (AI) and wireless communication technologies has become one of the major technologies trends towards 2030.
Use AI to improve the efficiency of the wireless transmission and supporting AI deployment with wireless networks.
arXiv Detail & Related papers (2024-06-17T00:11:04Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
Video Anomaly Detection (VAD) is a fundamental research task within the Artificial Intelligence (AI) community.
With the advancements in deep learning and edge computing, VAD has made significant progress.
This article offers an exhaustive tutorial for novices in NSVAD.
arXiv Detail & Related papers (2024-05-16T02:00:44Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End
Collaboration [56.330705072736166]
We propose a 6G native AI framework based on foundation models, provide a customization approach for intent-aware PFM, and outline a novel cloud-edge-end collaboration paradigm.
As a practical use case, we apply this framework for orchestration, achieving the maximum sum rate within a wireless communication system.
arXiv Detail & Related papers (2023-10-26T15:19:40Z) - Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.<n>It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.<n>We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Towards Fairness Certification in Artificial Intelligence [31.920661197618195]
We propose a first joint effort to define the operational steps needed for AI fairness certification.
We will overview the criteria that should be met by an AI system before coming into official service and the conformity assessment procedures useful to monitor its functioning for fair decisions.
arXiv Detail & Related papers (2021-06-04T14:12:12Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z) - Artificial Intelligence for UAV-enabled Wireless Networks: A Survey [72.10851256475742]
Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for the next-generation wireless communication networks.
Artificial intelligence (AI) is growing rapidly nowadays and has been very successful.
We provide a comprehensive overview of some potential applications of AI in UAV-based networks.
arXiv Detail & Related papers (2020-09-24T07:11:31Z) - Communication-Efficient Edge AI: Algorithms and Systems [39.28788394839187]
Wide scale deployment of edge devices (e.g., IoT devices) generates an unprecedented scale of data.
Such enormous data cannot all be sent from end devices to the cloud for processing.
By pushing inference and training processes of AI models to edge nodes, edge AI has emerged as a promising alternative.
arXiv Detail & Related papers (2020-02-22T09:27:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.