Kernel-Based Anomaly Detection Using Generalized Hyperbolic Processes
- URL: http://arxiv.org/abs/2501.15265v1
- Date: Sat, 25 Jan 2025 16:21:44 GMT
- Title: Kernel-Based Anomaly Detection Using Generalized Hyperbolic Processes
- Authors: Pauline Bourigault, Danilo P. Mandic,
- Abstract summary: We present a novel approach to anomaly detection by integrating Generalized Hyperbolic (GH) processes into kernel-based methods.
We propose a GH-based kernel function and utilize it within Kernel Density Estimation (KDE) and One-Class Support Vector Machines (OCSVM) to develop anomaly detection frameworks.
- Score: 16.79885220470521
- License:
- Abstract: We present a novel approach to anomaly detection by integrating Generalized Hyperbolic (GH) processes into kernel-based methods. The GH distribution, known for its flexibility in modeling skewness, heavy tails, and kurtosis, helps to capture complex patterns in data that deviate from Gaussian assumptions. We propose a GH-based kernel function and utilize it within Kernel Density Estimation (KDE) and One-Class Support Vector Machines (OCSVM) to develop anomaly detection frameworks. Theoretical results confirmed the positive semi-definiteness and consistency of the GH-based kernel, ensuring its suitability for machine learning applications. Empirical evaluation on synthetic and real-world datasets showed that our method improves detection performance in scenarios involving heavy-tailed and asymmetric or imbalanced distributions. https://github.com/paulinebourigault/GHKernelAnomalyDetect
Related papers
- On the Consistency of Kernel Methods with Dependent Observations [5.467140383171385]
We propose a new notion of empirical weak convergence (EWC) explaining such phenomena for kernel methods.
EWC assumes the existence of a random data distribution and is a strict weakening of previous assumptions in the field.
Our results open new classes of processes to statistical learning and can serve as a foundation for a theory of learning beyond i.i.d. and mixing.
arXiv Detail & Related papers (2024-06-10T08:35:01Z) - Learning Analysis of Kernel Ridgeless Regression with Asymmetric Kernel Learning [33.34053480377887]
This paper enhances kernel ridgeless regression with Locally-Adaptive-Bandwidths (LAB) RBF kernels.
For the first time, we demonstrate that functions learned from LAB RBF kernels belong to an integral space of Reproducible Kernel Hilbert Spaces (RKHSs)
arXiv Detail & Related papers (2024-06-03T15:28:12Z) - Predicting Open-Hole Laminates Failure Using Support Vector Machines With Classical and Quantum Kernels [2.0039767863372506]
We show how to train surrogate models to learn the ultimate failure envelope of an open hole composite plate under in-plane loading.
Thanks to kernel-target alignment optimization, we tune the free parameters of all kernels to best separate safe and failure-inducing loading states.
arXiv Detail & Related papers (2024-05-05T11:48:50Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Meta-Learning Hypothesis Spaces for Sequential Decision-making [79.73213540203389]
We propose to meta-learn a kernel from offline data (Meta-KeL)
Under mild conditions, we guarantee that our estimated RKHS yields valid confidence sets.
We also empirically evaluate the effectiveness of our approach on a Bayesian optimization task.
arXiv Detail & Related papers (2022-02-01T17:46:51Z) - Hybrid Random Features [60.116392415715275]
We propose a new class of random feature methods for linearizing softmax and Gaussian kernels called hybrid random features (HRFs)
HRFs automatically adapt the quality of kernel estimation to provide most accurate approximation in the defined regions of interest.
arXiv Detail & Related papers (2021-10-08T20:22:59Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Marginalised Gaussian Processes with Nested Sampling [10.495114898741203]
Gaussian Process (GPs) models are a rich distribution over functions with inductive biases controlled by a kernel function.
This work presents an alternative learning procedure where the hyperparameters of the kernel function are marginalised using Nested Sampling (NS)
arXiv Detail & Related papers (2020-10-30T16:04:35Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
We build upon the notion of the posterior similarity matrix (PSM) in order to suggest new approaches for summarising the output of MCMC algorithms for Bayesian clustering models.
A key contribution of our work is the observation that PSMs are positive semi-definite, and hence can be used to define probabilistically-motivated kernel matrices.
arXiv Detail & Related papers (2020-09-27T14:16:14Z) - Isolation Distributional Kernel: A New Tool for Point & Group Anomaly
Detection [76.1522587605852]
Isolation Distributional Kernel (IDK) is a new way to measure the similarity between two distributions.
We demonstrate IDK's efficacy and efficiency as a new tool for kernel based anomaly detection for both point and group anomalies.
arXiv Detail & Related papers (2020-09-24T12:25:43Z) - A Mean-Field Theory for Learning the Sch\"{o}nberg Measure of Radial
Basis Functions [13.503048325896174]
We learn the distribution in the Sch"onberg integral representation of the radial basis functions from training samples.
We prove that in the scaling limits, the empirical measure of the Langevin particles converges to the law of a reflected Ito diffusion-drift process.
arXiv Detail & Related papers (2020-06-23T21:04:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.