Fairness-aware Contextual Dynamic Pricing with Strategic Buyers
- URL: http://arxiv.org/abs/2501.15338v1
- Date: Sat, 25 Jan 2025 22:30:37 GMT
- Title: Fairness-aware Contextual Dynamic Pricing with Strategic Buyers
- Authors: Pangpang Liu, Will Wei Sun,
- Abstract summary: We propose a dynamic pricing policy that simultaneously achieves price fairness and discourages strategic behaviors.
Our policy achieves an upper bound of $O(sqrt+H(T))$ regret over $T$ time horizons.
We also prove an $Omega(sqrtT)$ regret lower bound of any pricing policy under our problem setting.
- Score: 4.883313216485195
- License:
- Abstract: Contextual pricing strategies are prevalent in online retailing, where the seller adjusts prices based on products' attributes and buyers' characteristics. Although such strategies can enhance seller's profits, they raise concerns about fairness when significant price disparities emerge among specific groups, such as gender or race. These disparities can lead to adverse perceptions of fairness among buyers and may even violate the law and regulation. In contrast, price differences can incentivize disadvantaged buyers to strategically manipulate their group identity to obtain a lower price. In this paper, we investigate contextual dynamic pricing with fairness constraints, taking into account buyers' strategic behaviors when their group status is private and unobservable from the seller. We propose a dynamic pricing policy that simultaneously achieves price fairness and discourages strategic behaviors. Our policy achieves an upper bound of $O(\sqrt{T}+H(T))$ regret over $T$ time horizons, where the term $H(T)$ arises from buyers' assessment of the fairness of the pricing policy based on their learned price difference. When buyers are able to learn the fairness of the price policy, this upper bound reduces to $O(\sqrt{T})$. We also prove an $\Omega(\sqrt{T})$ regret lower bound of any pricing policy under our problem setting. We support our findings with extensive experimental evidence, showcasing our policy's effectiveness. In our real data analysis, we observe the existence of price discrimination against race in the loan application even after accounting for other contextual information. Our proposed pricing policy demonstrates a significant improvement, achieving 35.06% reduction in regret compared to the benchmark policy.
Related papers
- Multi-Task Dynamic Pricing in Credit Market with Contextual Information [10.407593835994433]
We study the dynamic pricing problem faced by a broker that buys and sells a large number of financial securities in the credit market.
One challenge in pricing these securities is their infrequent trading, which leads to insufficient data for individual pricing.
We propose a multi-task dynamic pricing framework that leverages these shared structures across securities, enhancing pricing accuracy through learning.
arXiv Detail & Related papers (2024-10-18T19:37:36Z) - A Primal-Dual Online Learning Approach for Dynamic Pricing of Sequentially Displayed Complementary Items under Sale Constraints [54.46126953873298]
We address the problem of dynamically pricing complementary items that are sequentially displayed to customers.
Coherent pricing policies for complementary items are essential because optimizing the pricing of each item individually is ineffective.
We empirically evaluate our approach using synthetic settings randomly generated from real-world data, and compare its performance in terms of constraints violation and regret.
arXiv Detail & Related papers (2024-07-08T09:55:31Z) - Pricing with Contextual Elasticity and Heteroscedastic Valuation [23.96777734246062]
We study an online contextual dynamic pricing problem, where customers decide whether to purchase a product based on its features and price.
We introduce a novel approach to modeling a customer's expected demand by incorporating feature-based price elasticity.
Our results shed light on the relationship between contextual elasticity and heteroscedastic valuation, providing insights for effective and practical pricing strategies.
arXiv Detail & Related papers (2023-12-26T11:07:37Z) - Contextual Dynamic Pricing with Strategic Buyers [93.97401997137564]
We study the contextual dynamic pricing problem with strategic buyers.
Seller does not observe the buyer's true feature, but a manipulated feature according to buyers' strategic behavior.
We propose a strategic dynamic pricing policy that incorporates the buyers' strategic behavior into the online learning to maximize the seller's cumulative revenue.
arXiv Detail & Related papers (2023-07-08T23:06:42Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
We consider a dynamic model with the consumers' preferences as well as price sensitivity varying over time.
We measure the performance of a dynamic pricing policy via regret, which is the expected revenue loss compared to a clairvoyant that knows the sequence of model parameters in advance.
Our regret analysis results not only demonstrate optimality of the proposed policy but also show that for policy planning it is essential to incorporate available structural information.
arXiv Detail & Related papers (2023-03-28T00:23:23Z) - Autoregressive Bandits [58.46584210388307]
We propose a novel online learning setting, Autoregressive Bandits, in which the observed reward is governed by an autoregressive process of order $k$.
We show that, under mild assumptions on the reward process, the optimal policy can be conveniently computed.
We then devise a new optimistic regret minimization algorithm, namely, AutoRegressive Upper Confidence Bound (AR-UCB), that suffers sublinear regret of order $widetildemathcalO left( frac(k+1)3/2sqrtnT (1-G
arXiv Detail & Related papers (2022-12-12T21:37:36Z) - Fairness-aware Online Price Discrimination with Nonparametric Demand
Models [13.46602731592102]
This paper studies the problem of dynamic discriminatory pricing under fairness constraints.
We propose an optimal dynamic pricing policy regarding regret, which enforces the strict price fairness constraint.
arXiv Detail & Related papers (2021-11-16T04:31:02Z) - Fairness, Welfare, and Equity in Personalized Pricing [88.9134799076718]
We study the interplay of fairness, welfare, and equity considerations in personalized pricing based on customer features.
We show the potential benefits of personalized pricing in two settings: pricing subsidies for an elective vaccine, and the effects of personalized interest rates on downstream outcomes in microcredit.
arXiv Detail & Related papers (2020-12-21T01:01:56Z) - Dynamic Incentive-aware Learning: Robust Pricing in Contextual Auctions [13.234975857626752]
We consider the problem of robust learning of reserve prices against strategic buyers in contextual second-price auctions.
We propose learning policies that are robust to such strategic behavior.
arXiv Detail & Related papers (2020-02-25T19:00:29Z) - Adversarial Attacks on Linear Contextual Bandits [87.08004581867537]
Malicious agents may have incentives to attack the bandit algorithm to induce it to perform a desired behavior.
We show that a malicious agent can force a linear contextual bandit algorithm to pull any desired arm $T - o(T)$ times over a horizon of $T$ steps.
We also investigate the case when a malicious agent is interested in affecting the behavior of the bandit algorithm in a single context.
arXiv Detail & Related papers (2020-02-10T15:04:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.