Fairness in LLM-Generated Surveys
- URL: http://arxiv.org/abs/2501.15351v1
- Date: Sat, 25 Jan 2025 23:42:20 GMT
- Title: Fairness in LLM-Generated Surveys
- Authors: Andrés Abeliuk, Vanessa Gaete, Naim Bro,
- Abstract summary: Large Language Models (LLMs) excel in text generation and understanding, especially simulating socio-political and economic patterns.<n>This study examines how LLMs perform across diverse populations by analyzing public surveys from Chile and the United States.<n>Political identity and race significantly influence prediction accuracy, while in Chile, gender, education, and religious affiliation play more pronounced roles.
- Score: 0.5720786928479238
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) excel in text generation and understanding, especially in simulating socio-political and economic patterns, serving as an alternative to traditional surveys. However, their global applicability remains questionable due to unexplored biases across socio-demographic and geographic contexts. This study examines how LLMs perform across diverse populations by analyzing public surveys from Chile and the United States, focusing on predictive accuracy and fairness metrics. The results show performance disparities, with LLM consistently outperforming on U.S. datasets. This bias originates from the U.S.-centric training data, remaining evident after accounting for socio-demographic differences. In the U.S., political identity and race significantly influence prediction accuracy, while in Chile, gender, education, and religious affiliation play more pronounced roles. Our study presents a novel framework for measuring socio-demographic biases in LLMs, offering a path toward ensuring fairer and more equitable model performance across diverse socio-cultural contexts.
Related papers
- Unequal Opportunities: Examining the Bias in Geographical Recommendations by Large Language Models [11.585115320816257]
This study examines the biases present in Large Language Models (LLMs) recommendations of U.S. cities and towns.
We focus on the consistency of LLMs responses and their tendency to over-represent or under-represent specific locations.
Our findings point to consistent demographic biases in these recommendations, which could perpetuate a rich-get-richer'' effect that widens existing economic disparities.
arXiv Detail & Related papers (2025-03-16T18:59:00Z) - Sometimes the Model doth Preach: Quantifying Religious Bias in Open LLMs through Demographic Analysis in Asian Nations [8.769839351949997]
Large Language Models (LLMs) are capable of generating opinions and propagating bias unknowingly.
Our work proposes a novel method that quantitatively analyzes the opinions generated by LLMs.
We evaluate modern, open LLMs such as Llama and Mistral on surveys conducted in various global south countries.
arXiv Detail & Related papers (2025-03-10T16:32:03Z) - Disparities in LLM Reasoning Accuracy and Explanations: A Case Study on African American English [66.97110551643722]
We investigate dialectal disparities in Large Language Models (LLMs) reasoning tasks.
We find that LLMs produce less accurate responses and simpler reasoning chains and explanations for AAE inputs.
These findings highlight systematic differences in how LLMs process and reason about different language varieties.
arXiv Detail & Related papers (2025-03-06T05:15:34Z) - Specializing Large Language Models to Simulate Survey Response Distributions for Global Populations [49.908708778200115]
We are the first to specialize large language models (LLMs) for simulating survey response distributions.
As a testbed, we use country-level results from two global cultural surveys.
We devise a fine-tuning method based on first-token probabilities to minimize divergence between predicted and actual response distributions.
arXiv Detail & Related papers (2025-02-10T21:59:27Z) - Large Language Models Reflect the Ideology of their Creators [73.25935570218375]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.
We uncover notable diversity in the ideological stance exhibited across different LLMs and languages.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - Hate Personified: Investigating the role of LLMs in content moderation [64.26243779985393]
For subjective tasks such as hate detection, where people perceive hate differently, the Large Language Model's (LLM) ability to represent diverse groups is unclear.
By including additional context in prompts, we analyze LLM's sensitivity to geographical priming, persona attributes, and numerical information to assess how well the needs of various groups are reflected.
arXiv Detail & Related papers (2024-10-03T16:43:17Z) - United in Diversity? Contextual Biases in LLM-Based Predictions of the 2024 European Parliament Elections [45.84205238554709]
Large language models (LLMs) are perceived by some as having the potential to revolutionize social science research.
In this study, we examine to what extent LLM-based predictions of public opinion exhibit context-dependent biases.
We predict voting behavior in the 2024 European Parliament elections using a state-of-the-art LLM.
arXiv Detail & Related papers (2024-08-29T16:01:06Z) - Social Debiasing for Fair Multi-modal LLMs [55.8071045346024]
Multi-modal Large Language Models (MLLMs) have advanced significantly, offering powerful vision-language understanding capabilities.
However, these models often inherit severe social biases from their training datasets, leading to unfair predictions based on attributes like race and gender.
This paper addresses the issue of social biases in MLLMs by i) Introducing a comprehensive Counterfactual dataset with Multiple Social Concepts (CMSC) and ii) Proposing an Anti-Stereotype Debiasing strategy (ASD)
arXiv Detail & Related papers (2024-08-13T02:08:32Z) - Are Social Sentiments Inherent in LLMs? An Empirical Study on Extraction of Inter-demographic Sentiments [14.143299702954023]
This study focuses on social groups defined in terms of nationality, religion, and race/ethnicity.
We input questions regarding sentiments from one group to another into LLMs, apply sentiment analysis to the responses, and compare the results with social surveys.
arXiv Detail & Related papers (2024-08-08T08:13:25Z) - Understanding Intrinsic Socioeconomic Biases in Large Language Models [4.276697874428501]
We introduce a novel dataset of one million English sentences to quantify socioeconomic biases.
Our findings reveal pervasive socioeconomic biases in both established models like GPT-2 and state-of-the-art models like Llama 2 and Falcon.
arXiv Detail & Related papers (2024-05-28T23:54:44Z) - Large Language Models are Geographically Biased [47.88767211956144]
We study what Large Language Models (LLMs) know about the world we live in through the lens of geography.
We show various problematic geographic biases, which we define as systemic errors in geospatial predictions.
arXiv Detail & Related papers (2024-02-05T02:32:09Z) - Investigating Subtler Biases in LLMs: Ageism, Beauty, Institutional, and Nationality Bias in Generative Models [0.0]
This paper investigates bias along less-studied but still consequential, dimensions, such as age and beauty.
We ask whether LLMs hold wide-reaching biases of positive or negative sentiment for specific social groups similar to the "what is beautiful is good" bias found in people in experimental psychology.
arXiv Detail & Related papers (2023-09-16T07:07:04Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.