AI-Driven Secure Data Sharing: A Trustworthy and Privacy-Preserving Approach
- URL: http://arxiv.org/abs/2501.15363v1
- Date: Sun, 26 Jan 2025 02:03:19 GMT
- Title: AI-Driven Secure Data Sharing: A Trustworthy and Privacy-Preserving Approach
- Authors: Al Amin, Kamrul Hasan, Sharif Ullah, Liang Hong,
- Abstract summary: This research introduces a secure framework consisting of a learnable encryption method based on the block-pixel operation to encrypt the data.
The proposed framework ensures data privacy and security by creating unique scrambling patterns per key.
The framework was validated with a 94% success rate after extensive testing on real-world datasets.
- Score: 1.4274471390400758
- License:
- Abstract: In the era of data-driven decision-making, ensuring the privacy and security of shared data is paramount across various domains. Applying existing deep neural networks (DNNs) to encrypted data is critical and often compromises performance, security, and computational overhead. To address these limitations, this research introduces a secure framework consisting of a learnable encryption method based on the block-pixel operation to encrypt the data and subsequently integrate it with the Vision Transformer (ViT). The proposed framework ensures data privacy and security by creating unique scrambling patterns per key, providing robust performance against adversarial attacks without compromising computational efficiency and data integrity. The framework was tested on sensitive medical datasets to validate its efficacy, proving its ability to handle highly confidential information securely. The suggested framework was validated with a 94\% success rate after extensive testing on real-world datasets, such as MRI brain tumors and histological scans of lung and colon cancers. Additionally, the framework was tested under diverse adversarial attempts against secure data sharing with optimum performance and demonstrated its effectiveness in various threat scenarios. These comprehensive analyses underscore its robustness, making it a trustworthy solution for secure data sharing in critical applications.
Related papers
- ViT Enhanced Privacy-Preserving Secure Medical Data Sharing and Classification [8.140412831443454]
This research introduces a secure framework consisting of a learnable encryption method based on the block-pixel operation to encrypt the data and subsequently integrate it with the Vision Transformer (ViT)
The proposed framework ensures data privacy and security by creating unique scrambling patterns per key, providing robust performance against leading bit attacks and minimum difference attacks.
arXiv Detail & Related papers (2024-11-08T16:33:20Z) - Federated Instruction Tuning of LLMs with Domain Coverage Augmentation [87.49293964617128]
Federated Domain-specific Instruction Tuning (FedDIT) utilizes limited cross-client private data together with various strategies of instruction augmentation.
We propose FedDCA, which optimize domain coverage through greedy client center selection and retrieval-based augmentation.
For client-side computational efficiency and system scalability, FedDCA$*$, the variant of FedDCA, utilizes heterogeneous encoders with server-side feature alignment.
arXiv Detail & Related papers (2024-09-30T09:34:31Z) - Towards Secure and Private AI: A Framework for Decentralized Inference [14.526663289437584]
Large multimodal foundational models present challenges in scalability, reliability, and potential misuse.
Decentralized systems offer a solution by distributing workload and mitigating central points of failure.
We address these challenges with a comprehensive framework designed for responsible AI development.
arXiv Detail & Related papers (2024-07-28T05:09:17Z) - Securing Health Data on the Blockchain: A Differential Privacy and Federated Learning Framework [1.3654846342364306]
The study integrates Differential Privacy (DP) with Federated Learning (FL) to protect sensitive health data collected by IoT nodes.
The proposed framework utilizes dynamic personalization and adaptive noise distribution strategies to balance privacy and data utility.
arXiv Detail & Related papers (2024-05-19T15:15:18Z) - TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
We propose TernaryVote, which combines a ternary compressor and the majority vote mechanism to realize differential privacy, gradient compression, and Byzantine resilience simultaneously.
We theoretically quantify the privacy guarantee through the lens of the emerging f-differential privacy (DP) and the Byzantine resilience of the proposed algorithm.
arXiv Detail & Related papers (2024-02-16T16:41:14Z) - Secure and Verifiable Data Collaboration with Low-Cost Zero-Knowledge
Proofs [30.260427020479536]
In this paper, we propose a novel and highly efficient solution RiseFL for secure and verifiable data collaboration.
Firstly, we devise a probabilistic integrity check method that significantly reduces the cost of ZKP generation and verification.
Thirdly, we design a hybrid commitment scheme to satisfy Byzantine robustness with improved performance.
arXiv Detail & Related papers (2023-11-26T14:19:46Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
We first design a user-centric privacy-preserving framework based on decentralized Federated Learning (FL) for healthcare metaverses.
We then utilize Age of Information (AoI) as an effective data-freshness metric and propose an AoI-based contract theory model under Prospect Theory (PT) to motivate sensing data sharing.
arXiv Detail & Related papers (2023-07-29T12:54:03Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
We introduce a holistic auditing framework that comprehensively evaluates synthetic datasets and AI models.
It focuses on preventing bias and discrimination, ensures fidelity to the source data, assesses utility, robustness, and privacy preservation.
We demonstrate the framework's effectiveness by auditing various generative models across diverse use cases.
arXiv Detail & Related papers (2023-04-21T09:03:18Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
We introduce a deep learning framework able to deal with strong privacy constraints.
Based on collaborative learning, differential privacy and homomorphic encryption, the proposed approach advances state-of-the-art.
arXiv Detail & Related papers (2020-06-16T19:31:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.