Ocean-OCR: Towards General OCR Application via a Vision-Language Model
- URL: http://arxiv.org/abs/2501.15558v1
- Date: Sun, 26 Jan 2025 15:20:39 GMT
- Title: Ocean-OCR: Towards General OCR Application via a Vision-Language Model
- Authors: Song Chen, Xinyu Guo, Yadong Li, Tao Zhang, Mingan Lin, Dongdong Kuang, Youwei Zhang, Lingfeng Ming, Fengyu Zhang, Yuran Wang, Jianhua Xu, Zenan Zhou, Weipeng Chen,
- Abstract summary: We present textbfOcean-OCR, a 3B MLLM with state-of-the-art performance on various OCR scenarios and comparable understanding ability on general tasks.<n>We demonstrate the superiority of Ocean-OCR through comprehensive experiments on open-source OCR benchmarks and across various OCR scenarios.
- Score: 6.70908296002235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal large language models (MLLMs) have shown impressive capabilities across various domains, excelling in processing and understanding information from multiple modalities. Despite the rapid progress made previously, insufficient OCR ability hinders MLLMs from excelling in text-related tasks. In this paper, we present \textbf{Ocean-OCR}, a 3B MLLM with state-of-the-art performance on various OCR scenarios and comparable understanding ability on general tasks. We employ Native Resolution ViT to enable variable resolution input and utilize a substantial collection of high-quality OCR datasets to enhance the model performance. We demonstrate the superiority of Ocean-OCR through comprehensive experiments on open-source OCR benchmarks and across various OCR scenarios. These scenarios encompass document understanding, scene text recognition, and handwritten recognition, highlighting the robust OCR capabilities of Ocean-OCR. Note that Ocean-OCR is the first MLLM to outperform professional OCR models such as TextIn and PaddleOCR.
Related papers
- Improving MLLM's Document Image Machine Translation via Synchronously Self-reviewing Its OCR Proficiency [31.095908827004695]
Multimodal Large Language Models (MLLMs) have shown strong performance in document image tasks.<n>They struggle with Document Image Machine Translation (DIMT), which requires handling both cross-modal and cross-lingual challenges.<n>We introduce a novel fine-tuning paradigm, named Synchronously Self-Reviewing (SSR) its OCR proficiency, inspired by the concept "Bilingual Cognitive Advantage"
arXiv Detail & Related papers (2025-07-11T05:02:06Z) - Reasoning-OCR: Can Large Multimodal Models Solve Complex Logical Reasoning Problems from OCR Cues? [73.35232225256968]
Reasoning-OCR challenges LMMs to solve complex reasoning problems based on the cues that can be extracted from rich visual-text.<n>Our evaluation offers some insights for proprietary and open-source LMMs in different reasoning challenges.
arXiv Detail & Related papers (2025-05-19T06:45:18Z) - Lost in OCR Translation? Vision-Based Approaches to Robust Document Retrieval [38.569818461453394]
Retrieval-Augmented Generation (RAG) is a technique for grounding responses in external documents.<n>Traditional RAG systems rely on Optical Character Recognition (OCR) to first process scanned documents into text.<n>Recent vision-language approaches, such as ColPali, propose direct visual embedding of documents, eliminating the need for OCR.
arXiv Detail & Related papers (2025-05-08T21:54:02Z) - VISTA-OCR: Towards generative and interactive end to end OCR models [3.7548609506798494]
VISTA-OCR is a lightweight architecture that unifies text detection and recognition within a single generative model.
Built on an encoder-decoder architecture, VISTA-OCR is progressively trained, starting with the visual feature extraction phase.
To enhance the model's capabilities, we built a new dataset composed of real-world examples enriched with bounding box annotations and synthetic samples.
arXiv Detail & Related papers (2025-04-04T17:39:53Z) - MultiOCR-QA: Dataset for Evaluating Robustness of LLMs in Question Answering on Multilingual OCR Texts [17.20084584886653]
We introduce a multilingual QA dataset MultiOCR-QA, designed to analyze the effects of OCR noise on QA systems' performance.
The MultiOCR-QA dataset comprises 60K question-answer pairs covering three languages, English, French, and German.
Our findings show that QA systems are highly prone to OCR induced errors and exhibit performance degradation on noisy OCR text.
arXiv Detail & Related papers (2025-02-24T02:16:37Z) - Do Current Video LLMs Have Strong OCR Abilities? A Preliminary Study [5.667343827196717]
This paper introduces a novel benchmark designed to evaluate the video OCR performance of multi-modal models in videos.<n>We developed this benchmark using a semi-automated approach that integrates the OCR ability of image LLMs with manual refinement, balancing efficiency, cost, and data quality.
arXiv Detail & Related papers (2024-12-29T23:20:01Z) - CC-OCR: A Comprehensive and Challenging OCR Benchmark for Evaluating Large Multimodal Models in Literacy [50.78228433498211]
CC-OCR comprises four OCR-centric tracks: multi-scene text reading, multilingual text reading, document parsing, and key information extraction.<n>It includes 39 subsets with 7,058 full annotated images, of which 41% are sourced from real applications, and released for the first time.<n>We evaluate nine prominent LMMs and reveal both the strengths and weaknesses of these models, particularly in text grounding, multi-orientation, and hallucination of repetition.
arXiv Detail & Related papers (2024-12-03T07:03:25Z) - DLoRA-TrOCR: Mixed Text Mode Optical Character Recognition Based On Transformer [12.966765239586994]
Multi- fonts, mixed scenes and complex layouts seriously affect the recognition accuracy of traditional OCR models.
We propose a parameter-efficient mixed text recognition method based on pre-trained OCR Transformer, namely DLoRA-TrOCR.
arXiv Detail & Related papers (2024-04-19T09:28:16Z) - UReader: Universal OCR-free Visually-situated Language Understanding
with Multimodal Large Language Model [108.85584502396182]
We propose UReader, a first exploration of universal OCR-free visually-situated language understanding based on the Multimodal Large Language Model (MLLM)
By leveraging the shallow text recognition ability of the MLLM, we only finetuned 1.2% parameters.
Our single model achieves state-of-the-art ocr-free performance in 8 out of 10 visually-situated language understanding tasks.
arXiv Detail & Related papers (2023-10-08T11:33:09Z) - mPLUG-DocOwl: Modularized Multimodal Large Language Model for Document
Understanding [55.4806974284156]
Document understanding refers to automatically extract, analyze and comprehend information from digital documents, such as a web page.
Existing Multi-model Large Language Models (MLLMs) have demonstrated promising zero-shot capabilities in shallow OCR-free text recognition.
arXiv Detail & Related papers (2023-07-04T11:28:07Z) - OCRBench: On the Hidden Mystery of OCR in Large Multimodal Models [122.27878464009181]
We conducted a comprehensive evaluation of Large Multimodal Models, such as GPT4V and Gemini, in various text-related visual tasks.
OCRBench contains 29 datasets, making it the most comprehensive OCR evaluation benchmark available.
arXiv Detail & Related papers (2023-05-13T11:28:37Z) - User-Centric Evaluation of OCR Systems for Kwak'wala [92.73847703011353]
We show that utilizing OCR reduces the time spent in the manual transcription of culturally valuable documents by over 50%.
Our results demonstrate the potential benefits that OCR tools can have on downstream language documentation and revitalization efforts.
arXiv Detail & Related papers (2023-02-26T21:41:15Z) - Structured Multimodal Attentions for TextVQA [57.71060302874151]
We propose an end-to-end structured multimodal attention (SMA) neural network to mainly solve the first two issues above.
SMA first uses a structural graph representation to encode the object-object, object-text and text-text relationships appearing in the image, and then designs a multimodal graph attention network to reason over it.
Our proposed model outperforms the SoTA models on TextVQA dataset and two tasks of ST-VQA dataset among all models except pre-training based TAP.
arXiv Detail & Related papers (2020-06-01T07:07:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.