Twin Transition or Competing Interests? Validation of the Artificial Intelligence and Sustainability Perceptions Inventory (AISPI)
- URL: http://arxiv.org/abs/2501.15585v1
- Date: Sun, 26 Jan 2025 16:21:27 GMT
- Title: Twin Transition or Competing Interests? Validation of the Artificial Intelligence and Sustainability Perceptions Inventory (AISPI)
- Authors: Annika Bush,
- Abstract summary: This paper presents the development and validation of the Artificial Intelligence and Sustainability Perceptions Inventory (AISPI)
The 13-item instrument measures how individuals view the relationship between AI advancement and environmental sustainability.
Our findings suggest that individuals can simultaneously recognize both synergies and tensions in the AI-sustainability relationship.
- Score: 0.0
- License:
- Abstract: As artificial intelligence (AI) and sustainability initiatives increasingly intersect, understanding public perceptions of their relationship becomes crucial for successful implementation. However, no validated instrument exists to measure these specific perceptions. This paper presents the development and validation of the Artificial Intelligence and Sustainability Perceptions Inventory (AISPI), a novel 13-item instrument measuring how individuals view the relationship between AI advancement and environmental sustainability. Through factor analysis (N=105), we identified two distinct dimensions: Twin Transition and Competing Interests. The instrument demonstrated strong reliability (alpha=.89) and construct validity through correlations with established measures of AI and sustainability attitudes. Our findings suggest that individuals can simultaneously recognize both synergies and tensions in the AI-sustainability relationship, offering important implications for researchers and practitioners working at this critical intersection. This work provides a foundational tool for future research on public perceptions of AI's role in sustainable development.
Related papers
- Using Sustainability Impact Scores for Software Architecture Evaluation [5.33605239628904]
We present an improved version of the Sustainability Impact Score (SIS)
The SIS facilitates the identification and quantification of trade-offs in terms of their sustainability impact.
Our study reveals that technical quality concerns have significant, often unrecognized impacts across sustainability dimensions.
arXiv Detail & Related papers (2025-01-28T15:00:45Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
Recent advancements in AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment.
The lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment.
We introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML)
arXiv Detail & Related papers (2024-06-13T16:03:25Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
We introduce the symmetrical reality framework, which offers a unified representation encompassing various forms of physical-virtual amalgamations.
We propose an instance of an AI-driven active assistance service that illustrates the potential applications of symmetrical reality.
arXiv Detail & Related papers (2024-01-26T16:09:39Z) - Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.
It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.
We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - Broadening the perspective for sustainable AI: Comprehensive
sustainability criteria and indicators for AI systems [0.0]
This paper takes steps towards substantiating the call for an overarching perspective on "sustainable AI"
It presents the SCAIS Framework which contains a set 19 sustainability criteria for sustainable AI and 67 indicators.
arXiv Detail & Related papers (2023-06-22T18:00:55Z) - Enhancing Artificial intelligence Policies with Fusion and Forecasting:
Insights from Indian Patents Using Network Analysis [0.0]
This paper presents a study of the interconnectivity and interdependence of various Artificial intelligence (AI) technologies.
By analyzing the technologies through different time windows and quantifying their importance, we have revealed important insights into the crucial components shaping the AI landscape.
arXiv Detail & Related papers (2023-04-20T18:37:11Z) - A.I. Robustness: a Human-Centered Perspective on Technological
Challenges and Opportunities [8.17368686298331]
Robustness of Artificial Intelligence (AI) systems remains elusive and constitutes a key issue that impedes large-scale adoption.
We introduce three concepts to organize and describe the literature both from a fundamental and applied point of view.
We highlight the central role of humans in evaluating and enhancing AI robustness, considering the necessary knowledge humans can provide.
arXiv Detail & Related papers (2022-10-17T10:00:51Z) - A Survey on AI Sustainability: Emerging Trends on Learning Algorithms
and Research Challenges [35.317637957059944]
We review major trends in machine learning approaches that can address the sustainability problem of AI.
We will highlight the major limitations of existing studies and propose potential research challenges and directions for the development of next generation of sustainable AI techniques.
arXiv Detail & Related papers (2022-05-08T09:38:35Z) - Active Inference in Robotics and Artificial Agents: Survey and
Challenges [51.29077770446286]
We review the state-of-the-art theory and implementations of active inference for state-estimation, control, planning and learning.
We showcase relevant experiments that illustrate its potential in terms of adaptation, generalization and robustness.
arXiv Detail & Related papers (2021-12-03T12:10:26Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.