Blissful (A)Ignorance: People form overly positive impressions of others based on their written messages, despite wide-scale adoption of Generative AI
- URL: http://arxiv.org/abs/2501.15678v1
- Date: Sun, 26 Jan 2025 21:38:12 GMT
- Title: Blissful (A)Ignorance: People form overly positive impressions of others based on their written messages, despite wide-scale adoption of Generative AI
- Authors: Jiaqi Zhu, Andras Molnar,
- Abstract summary: We explore how senders' use of Generative AI (GenAI) influenced recipients' impressions of senders.
Under the more realistic condition when potential GenAI use was not explicitly highlighted, recipients did not exhibit any skepticism towards senders.
Even when we highlighted the potential (but uncertain) use of GenAI, recipients formed overly positive impressions.
- Score: 3.123597245751675
- License:
- Abstract: As the use of Generative AI (GenAI) tools becomes more prevalent in interpersonal communication, understanding their impact on social perceptions is crucial. According to signaling theory, GenAI may undermine the credibility of social signals conveyed in writing, since it reduces the cost of writing and makes it hard to verify the authenticity of messages. Using a pre-registered large-scale online experiment (N = 647; Prolific), featuring scenarios in a range of communication contexts (personal vs. professional; close others vs. strangers), we explored how senders' use of GenAI influenced recipients' impressions of senders, both when GenAI use was known or uncertain. Consistent with past work, we found strong negative effects on social impressions when disclosing that a message was AI-generated, compared to when the same message was human-written. However, under the more realistic condition when potential GenAI use was not explicitly highlighted, recipients did not exhibit any skepticism towards senders, and these "uninformed" impressions were virtually indistinguishable from those of fully human-written messages. Even when we highlighted the potential (but uncertain) use of GenAI, recipients formed overly positive impressions. These results are especially striking given that 46% of our sample admitted having used such tools for writing messages, just within the past two weeks. Our findings put past work in a new light: While social judgments can be substantially affected when GenAI use is explicitly disclosed, this information may not be readily available in more realistic communication settings, making recipients blissfully ignorant about others' potential use of GenAI.
Related papers
- Misconceptions, Pragmatism, and Value Tensions: Evaluating Students' Understanding and Perception of Generative AI for Education [0.11704154007740832]
Students are early adopters of the technology, utilizing it in atypical ways.
Students were asked to describe 1) their understanding of GenAI; 2) their use of GenAI; 3) their opinions on the benefits, downsides, and ethical issues pertaining to its use in education.
arXiv Detail & Related papers (2024-10-29T17:41:06Z) - "I Am the One and Only, Your Cyber BFF": Understanding the Impact of GenAI Requires Understanding the Impact of Anthropomorphic AI [55.99010491370177]
We argue that we cannot thoroughly map the social impacts of generative AI without mapping the social impacts of anthropomorphic AI.
anthropomorphic AI systems are increasingly prone to generating outputs that are perceived to be human-like.
arXiv Detail & Related papers (2024-10-11T04:57:41Z) - Human Bias in the Face of AI: The Role of Human Judgement in AI Generated Text Evaluation [48.70176791365903]
This study explores how bias shapes the perception of AI versus human generated content.
We investigated how human raters respond to labeled and unlabeled content.
arXiv Detail & Related papers (2024-09-29T04:31:45Z) - The Great AI Witch Hunt: Reviewers Perception and (Mis)Conception of Generative AI in Research Writing [25.73744132026804]
Generative AI (GenAI) use in research writing is growing fast.
It is unclear how peer reviewers recognize or misjudge AI-augmented manuscripts.
Our findings indicate that while AI-augmented writing improves readability, language diversity, and informativeness, it often lacks research details and reflective insights from authors.
arXiv Detail & Related papers (2024-06-27T02:38:25Z) - The Influencer Next Door: How Misinformation Creators Use GenAI [1.1650821883155187]
We find that non-experts increasingly use GenAI to remix, repackage, and (re)produce content to meet their personal needs and desires.
We analyze how these understudied emergent uses of GenAI produce new or accelerated misinformation harms.
arXiv Detail & Related papers (2024-05-22T11:40:22Z) - The effect of source disclosure on evaluation of AI-generated messages:
A two-part study [0.0]
We examined the influence of source disclosure on people's evaluation of AI-generated health prevention messages.
We found that source disclosure significantly impacted the evaluation of the messages but did not significantly alter message rankings.
For those with moderate levels of negative attitudes towards AI, source disclosure decreased the preference for AI-generated messages.
arXiv Detail & Related papers (2023-11-27T05:20:47Z) - Identifying and Mitigating the Security Risks of Generative AI [179.2384121957896]
This paper reports the findings of a workshop held at Google on the dual-use dilemma posed by GenAI.
GenAI can be used just as well by attackers to generate new attacks and increase the velocity and efficacy of existing attacks.
We discuss short-term and long-term goals for the community on this topic.
arXiv Detail & Related papers (2023-08-28T18:51:09Z) - Leveraging Implicit Feedback from Deployment Data in Dialogue [83.02878726357523]
We study improving social conversational agents by learning from natural dialogue between users and a deployed model.
We leverage signals like user response length, sentiment and reaction of the future human utterances in the collected dialogue episodes.
arXiv Detail & Related papers (2023-07-26T11:34:53Z) - Public Perception of Generative AI on Twitter: An Empirical Study Based
on Occupation and Usage [7.18819534653348]
This paper investigates users' perceptions of generative AI using 3M posts on Twitter from January 2019 to March 2023.
We find that people across various occupations, not just IT-related ones, show a strong interest in generative AI.
After the release of ChatGPT, people's interest in AI in general has increased dramatically.
arXiv Detail & Related papers (2023-05-16T15:30:12Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
We propose a novel framework for generating training examples informed by the known styles and strategies of human-authored propaganda.
Specifically, we perform self-critical sequence training guided by natural language inference to ensure the validity of the generated articles.
Our experimental results show that fake news detectors trained on PropaNews are better at detecting human-written disinformation by 3.62 - 7.69% F1 score on two public datasets.
arXiv Detail & Related papers (2022-03-10T14:24:19Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
We argue that it is critical to understand what user attributes potentially cause users to share fake news.
In fake news dissemination, confounders can be characterized by fake news sharing behavior that inherently relates to user attributes and online activities.
We propose a principled approach to alleviating selection bias in fake news dissemination.
arXiv Detail & Related papers (2020-10-20T19:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.