ESGSenticNet: A Neurosymbolic Knowledge Base for Corporate Sustainability Analysis
- URL: http://arxiv.org/abs/2501.15720v1
- Date: Mon, 27 Jan 2025 01:21:12 GMT
- Title: ESGSenticNet: A Neurosymbolic Knowledge Base for Corporate Sustainability Analysis
- Authors: Keane Ong, Rui Mao, Frank Xing, Ranjan Satapathy, Johan Sulaeman, Erik Cambria, Gianmarco Mengaldo,
- Abstract summary: We introduce ESGSenticNet, a knowledge base for sustainability analysis.
ESGSenticNet is constructed from a neurosymbolic framework that integrates specialised concept parsing, GPT-4o inference, and semi-supervised label propagation.
Experiments indicate that ESGSenticNet, when deployed as a lexical method, more effectively captures relevant and actionable sustainability information.
- Score: 26.738671295538396
- License:
- Abstract: Evaluating corporate sustainability performance is essential to drive sustainable business practices, amid the need for a more sustainable economy. However, this is hindered by the complexity and volume of corporate sustainability data (i.e. sustainability disclosures), not least by the effectiveness of the NLP tools used to analyse them. To this end, we identify three primary challenges - immateriality, complexity, and subjectivity, that exacerbate the difficulty of extracting insights from sustainability disclosures. To address these issues, we introduce ESGSenticNet, a publicly available knowledge base for sustainability analysis. ESGSenticNet is constructed from a neurosymbolic framework that integrates specialised concept parsing, GPT-4o inference, and semi-supervised label propagation, together with a hierarchical taxonomy. This approach culminates in a structured knowledge base of 44k knowledge triplets - ('halve carbon emission', supports, 'emissions control'), for effective sustainability analysis. Experiments indicate that ESGSenticNet, when deployed as a lexical method, more effectively captures relevant and actionable sustainability information from sustainability disclosures compared to state of the art baselines. Besides capturing a high number of unique ESG topic terms, ESGSenticNet outperforms baselines on the ESG relatedness and ESG action orientation of these terms by 26% and 31% respectively. These metrics describe the extent to which topic terms are related to ESG, and depict an action toward ESG. Moreover, when deployed as a lexical method, ESGSenticNet does not require any training, possessing a key advantage in its simplicity for non-technical stakeholders.
Related papers
- Leveraging Natural Language and Item Response Theory Models for ESG Scoring [0.0]
The study utilizes a comprehensive dataset of news articles in Portuguese related to Petrobras, a major oil company in Brazil.
The data is filtered and classified for ESG-related sentiments using advanced NLP methods.
The Rasch model is then applied to evaluate the psychometric properties of these ESG measures.
arXiv Detail & Related papers (2024-07-29T19:02:51Z) - Measuring Sustainability Intention of ESG Fund Disclosure using Few-Shot Learning [1.1957520154275776]
This paper proposes a unique method and system to classify and score the fund prospectuses in the sustainable universe.
We employ few-shot learners to identify specific, ambiguous, and generic sustainable investment-related language.
We construct a ratio metric to determine language score and rating to rank products and quantify sustainability claims.
arXiv Detail & Related papers (2024-07-09T14:25:23Z) - Explainable Natural Language Processing for Corporate Sustainability Analysis [26.267508407180465]
The concept of corporate sustainability is complex due to the diverse and intricate nature of firm operations.
Corporate sustainability assessments are plagued by subjectivity both within data that reflect corporate sustainability efforts and the analysts evaluating them.
We argue that Explainable Natural Language Processing (XNLP) can significantly enhance corporate sustainability analysis.
arXiv Detail & Related papers (2024-07-03T08:27:51Z) - Glitter or Gold? Deriving Structured Insights from Sustainability
Reports via Large Language Models [16.231171704561714]
This study uses Information Extraction (IE) methods to extract structured insights related to ESG aspects from companies' sustainability reports.
We then leverage graph-based representations to conduct statistical analyses concerning the extracted insights.
arXiv Detail & Related papers (2023-10-09T11:34:41Z) - The Robust Semantic Segmentation UNCV2023 Challenge Results [99.97867942388486]
This paper outlines the winning solutions employed in addressing the MUAD uncertainty quantification challenge held at ICCV 2023.
The challenge was centered around semantic segmentation in urban environments, with a particular focus on natural adversarial scenarios.
The report presents the results of 19 submitted entries, with numerous techniques drawing inspiration from cutting-edge uncertainty quantification methodologies.
arXiv Detail & Related papers (2023-09-27T08:20:03Z) - Semantic Communications for Artificial Intelligence Generated Content
(AIGC) Toward Effective Content Creation [75.73229320559996]
This paper develops a conceptual model for the integration of AIGC and SemCom.
A novel framework that employs AIGC technology is proposed as an encoder and decoder for semantic information.
The framework can adapt to different types of content generated, the required quality, and the semantic information utilized.
arXiv Detail & Related papers (2023-08-09T13:17:21Z) - How Robust is GPT-3.5 to Predecessors? A Comprehensive Study on Language
Understanding Tasks [65.7949334650854]
GPT-3.5 models have demonstrated impressive performance in various Natural Language Processing (NLP) tasks.
However, their robustness and abilities to handle various complexities of the open world have yet to be explored.
We show that GPT-3.5 faces some specific robustness challenges, including instability, prompt sensitivity, and number sensitivity.
arXiv Detail & Related papers (2023-03-01T07:39:01Z) - Incorporating Dynamic Semantics into Pre-Trained Language Model for
Aspect-based Sentiment Analysis [67.41078214475341]
We propose Dynamic Re-weighting BERT (DR-BERT) to learn dynamic aspect-oriented semantics for ABSA.
Specifically, we first take the Stack-BERT layers as a primary encoder to grasp the overall semantic of the sentence.
We then fine-tune it by incorporating a lightweight Dynamic Re-weighting Adapter (DRA)
arXiv Detail & Related papers (2022-03-30T14:48:46Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z) - Sustainability of ICT hardware procurement in Switzerland -- A
status-quo analysis of the public procurement sector [0.609170287691728]
Sustainable procurement requires organizations to align purchasing behavior with broader goals linked to resource efficiency, climate change, social responsibility and other sustainability criteria.
ICT in general is expected to be an important enabler for low-carbon economies, providing solutions to reduce Green-House Gas (GHG) emissions.
This case study on ICT hardware discusses the three important barriers "lack of clear definitions per product group", "missing market intelligence about sustainable products" and "inflexible procedures and attitudes as barriers for innovative approaches"
arXiv Detail & Related papers (2020-06-09T16:04:36Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
We propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA.
This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn)
Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-04T14:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.