LLM-powered Multi-agent Framework for Goal-oriented Learning in Intelligent Tutoring System
- URL: http://arxiv.org/abs/2501.15749v1
- Date: Mon, 27 Jan 2025 03:29:44 GMT
- Title: LLM-powered Multi-agent Framework for Goal-oriented Learning in Intelligent Tutoring System
- Authors: Tianfu Wang, Yi Zhan, Jianxun Lian, Zhengyu Hu, Nicholas Jing Yuan, Qi Zhang, Xing Xie, Hui Xiong,
- Abstract summary: GenMentor is a multi-agent framework designed to deliver goal-oriented, personalized learning within ITS.
It maps learners' goals to required skills using a fine-tuned LLM trained on a custom goal-to-skill dataset.
GenMentor tailors learning content with an exploration-drafting-integration mechanism to align with individual learner needs.
- Score: 54.71619734800526
- License:
- Abstract: Intelligent Tutoring Systems (ITSs) have revolutionized education by offering personalized learning experiences. However, as goal-oriented learning, which emphasizes efficiently achieving specific objectives, becomes increasingly important in professional contexts, existing ITSs often struggle to deliver this type of targeted learning experience. In this paper, we propose GenMentor, an LLM-powered multi-agent framework designed to deliver goal-oriented, personalized learning within ITS. GenMentor begins by accurately mapping learners' goals to required skills using a fine-tuned LLM trained on a custom goal-to-skill dataset. After identifying the skill gap, it schedules an efficient learning path using an evolving optimization approach, driven by a comprehensive and dynamic profile of learners' multifaceted status. Additionally, GenMentor tailors learning content with an exploration-drafting-integration mechanism to align with individual learner needs. Extensive automated and human evaluations demonstrate GenMentor's effectiveness in learning guidance and content quality. Furthermore, we have deployed it in practice and also implemented it as an application. Practical human study with professional learners further highlights its effectiveness in goal alignment and resource targeting, leading to enhanced personalization. Supplementary resources are available at https://github.com/GeminiLight/gen-mentor.
Related papers
- MAGELLAN: Metacognitive predictions of learning progress guide autotelic LLM agents in large goal spaces [30.231701007708146]
Open-ended learning agents must efficiently prioritize goals in vast possibility spaces.
Traditional approaches either require extensive sampling or rely on brittle expert-defined goal groupings.
We introduce MAGELLAN, a metacognitive framework that lets LLM agents learn to predict their competence and LP online.
arXiv Detail & Related papers (2025-02-11T17:08:00Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Proximal Curriculum with Task Correlations for Deep Reinforcement Learning [25.10619062353793]
We consider curriculum design in contextual multi-task settings where the agent's final performance is measured w.r.t. a target distribution over complex tasks.
We propose a novel curriculum, ProCuRL-Target, that effectively balances the need for selecting tasks that are not too difficult for the agent while progressing the agent's learning toward the target distribution via leveraging task correlations.
arXiv Detail & Related papers (2024-05-03T21:07:54Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
We propose a new task, named Goal-oriented Intelligent Tutoring Systems (GITS)
GITS aims to enable the student's mastery of a designated concept by strategically planning a customized sequence of exercises and assessment.
We propose a novel graph-based reinforcement learning framework, named Planning-Assessment-Interaction (PAI)
arXiv Detail & Related papers (2023-12-03T12:37:16Z) - Large Language Model as a Policy Teacher for Training Reinforcement Learning Agents [16.24662355253529]
Large Language Models (LLMs) can address sequential decision-making tasks through the provision of high-level instructions.
LLMs lack specialization in tackling specific target problems, particularly in real-time dynamic environments.
We introduce a novel framework that addresses these challenges by training a smaller, specialized student RL agent using instructions from an LLM-based teacher agent.
arXiv Detail & Related papers (2023-11-22T13:15:42Z) - Skill-based Multi-objective Reinforcement Learning of Industrial Robot
Tasks with Planning and Knowledge Integration [0.4949816699298335]
We introduce an approach that provides a combination of task-level planning with targeted learning of scenario-specific parameters for skill-based systems.
We demonstrate the efficacy and versatility of our approach by learning skill parameters for two different contact-rich tasks.
arXiv Detail & Related papers (2022-03-18T16:03:27Z) - It Takes Four to Tango: Multiagent Selfplay for Automatic Curriculum
Generation [107.10235120286352]
Training general-purpose reinforcement learning agents efficiently requires automatic generation of a goal curriculum.
We propose Curriculum Self Play (CuSP), an automated goal generation framework.
We demonstrate that our method succeeds at generating an effective curricula of goals for a range of control tasks.
arXiv Detail & Related papers (2022-02-22T01:23:23Z) - Self-directed Machine Learning [86.3709575146414]
In education science, self-directed learning has been shown to be more effective than passive teacher-guided learning.
We introduce the principal concept of Self-directed Machine Learning (SDML) and propose a framework for SDML.
Our proposed SDML process benefits from self task selection, self data selection, self model selection, self optimization strategy selection and self evaluation metric selection.
arXiv Detail & Related papers (2022-01-04T18:32:06Z) - Automatic Curriculum Learning through Value Disagreement [95.19299356298876]
Continually solving new, unsolved tasks is the key to learning diverse behaviors.
In the multi-task domain, where an agent needs to reach multiple goals, the choice of training goals can largely affect sample efficiency.
We propose setting up an automatic curriculum for goals that the agent needs to solve.
We evaluate our method across 13 multi-goal robotic tasks and 5 navigation tasks, and demonstrate performance gains over current state-of-the-art methods.
arXiv Detail & Related papers (2020-06-17T03:58:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.