Classification Error Bound for Low Bayes Error Conditions in Machine Learning
- URL: http://arxiv.org/abs/2501.15977v1
- Date: Mon, 27 Jan 2025 11:57:21 GMT
- Title: Classification Error Bound for Low Bayes Error Conditions in Machine Learning
- Authors: Zijian Yang, Vahe Eminyan, Ralf Schlüter, Hermann Ney,
- Abstract summary: We study the relationship between the error mismatch and the Kullback-Leibler divergence in machine learning.
Motivated by recent observations of low model-based classification errors in many machine learning tasks, we propose a linear approximation of the classification error bound for low Bayes error conditions.
- Score: 50.25063912757367
- License:
- Abstract: In statistical classification and machine learning, classification error is an important performance measure, which is minimized by the Bayes decision rule. In practice, the unknown true distribution is usually replaced with a model distribution estimated from the training data in the Bayes decision rule. This substitution introduces a mismatch between the Bayes error and the model-based classification error. In this work, we apply classification error bounds to study the relationship between the error mismatch and the Kullback-Leibler divergence in machine learning. Motivated by recent observations of low model-based classification errors in many machine learning tasks, bounding the Bayes error to be lower, we propose a linear approximation of the classification error bound for low Bayes error conditions. Then, the bound for class priors are discussed. Moreover, we extend the classification error bound for sequences. Using automatic speech recognition as a representative example of machine learning applications, this work analytically discusses the correlations among different performance measures with extended bounds, including cross-entropy loss, language model perplexity, and word error rate.
Related papers
- Understanding and Mitigating Classification Errors Through Interpretable
Token Patterns [58.91023283103762]
Characterizing errors in easily interpretable terms gives insight into whether a classifier is prone to making systematic errors.
We propose to discover those patterns of tokens that distinguish correct and erroneous predictions.
We show that our method, Premise, performs well in practice.
arXiv Detail & Related papers (2023-11-18T00:24:26Z) - Probabilistic Safety Regions Via Finite Families of Scalable Classifiers [2.431537995108158]
Supervised classification recognizes patterns in the data to separate classes of behaviours.
Canonical solutions contain misclassification errors that are intrinsic to the numerical approximating nature of machine learning.
We introduce the concept of probabilistic safety region to describe a subset of the input space in which the number of misclassified instances is probabilistically controlled.
arXiv Detail & Related papers (2023-09-08T22:40:19Z) - Is the Performance of My Deep Network Too Good to Be True? A Direct
Approach to Estimating the Bayes Error in Binary Classification [86.32752788233913]
In classification problems, the Bayes error can be used as a criterion to evaluate classifiers with state-of-the-art performance.
We propose a simple and direct Bayes error estimator, where we just take the mean of the labels that show emphuncertainty of the classes.
Our flexible approach enables us to perform Bayes error estimation even for weakly supervised data.
arXiv Detail & Related papers (2022-02-01T13:22:26Z) - Robust Importance Sampling for Error Estimation in the Context of
Optimal Bayesian Transfer Learning [13.760785726194591]
We introduce a novel class of Bayesian minimum mean-square error (MMSE) estimators for optimal Bayesian transfer learning (OBTL)
We employ the proposed estimator to evaluate the classification accuracy of a broad family of classifiers that span diverse learning capabilities.
Experimental results based on both synthetic data as well as real-world RNA sequencing (RNA-seq) data show that our proposed OBTL error estimation scheme clearly outperforms standard error estimators.
arXiv Detail & Related papers (2021-09-05T19:11:33Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
We show that we can compute the exact Bayes error of generative models learned using normalizing flows.
We use our approach to conduct a thorough investigation of state-of-the-art classification models.
arXiv Detail & Related papers (2021-06-07T06:21:20Z) - Defuse: Harnessing Unrestricted Adversarial Examples for Debugging
Models Beyond Test Accuracy [11.265020351747916]
Defuse is a method to automatically discover and correct model errors beyond those available in test data.
We propose an algorithm inspired by adversarial machine learning techniques that uses a generative model to find naturally occurring instances misclassified by a model.
Defuse corrects the error after fine-tuning while maintaining generalization on the test set.
arXiv Detail & Related papers (2021-02-11T18:08:42Z) - How to Control the Error Rates of Binary Classifiers [0.0]
We show how to turn binary classification into statistical tests, calculate the classification p-values, and use them to limit the target error rate.
In particular, we show how to turn binary classifiers into statistical tests, calculate the classification p-values, and use them to limit the target error rate.
arXiv Detail & Related papers (2020-10-21T14:43:14Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
Deep neural networks are effective on supervised learning tasks, but have been shown to be brittle.
In this paper, we leverage generative models to identify and characterize instances where classifiers fail to generalize.
Our approach is agnostic to class labels from the training set which makes it applicable to models trained in a semi-supervised way.
arXiv Detail & Related papers (2020-10-05T22:13:21Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.