Ringmaster ASGD: The First Asynchronous SGD with Optimal Time Complexity
- URL: http://arxiv.org/abs/2501.16168v1
- Date: Mon, 27 Jan 2025 16:07:26 GMT
- Title: Ringmaster ASGD: The First Asynchronous SGD with Optimal Time Complexity
- Authors: Artavazd Maranjyan, Alexander Tyurin, Peter Richtárik,
- Abstract summary: Ringmaster ASGD achieves optimal time complexity under arbitrarily heterogeneous computation times.
This makes it the first Asynchronous SGD method to meet the theoretical lower bounds for time complexity in such scenarios.
- Score: 92.1840862558718
- License:
- Abstract: Asynchronous Stochastic Gradient Descent (Asynchronous SGD) is a cornerstone method for parallelizing learning in distributed machine learning. However, its performance suffers under arbitrarily heterogeneous computation times across workers, leading to suboptimal time complexity and inefficiency as the number of workers scales. While several Asynchronous SGD variants have been proposed, recent findings by Tyurin & Richt\'arik (NeurIPS 2023) reveal that none achieve optimal time complexity, leaving a significant gap in the literature. In this paper, we propose Ringmaster ASGD, a novel Asynchronous SGD method designed to address these limitations and tame the inherent challenges of Asynchronous SGD. We establish, through rigorous theoretical analysis, that Ringmaster ASGD achieves optimal time complexity under arbitrarily heterogeneous and dynamically fluctuating worker computation times. This makes it the first Asynchronous SGD method to meet the theoretical lower bounds for time complexity in such scenarios.
Related papers
- MindFlayer: Efficient Asynchronous Parallel SGD in the Presence of Heterogeneous and Random Worker Compute Times [49.1574468325115]
We study the problem of minimizing the expectation of smooth non functions with the help of several parallel workers.
We propose a new asynchronous SGD method, Mindlayer SGD, in which the noise is heavy tailed.
Our theory empirical results demonstrate the superiority of Mindlayer SGD in cases when the noise is heavy tailed.
arXiv Detail & Related papers (2024-10-05T21:11:32Z) - Dual-Delayed Asynchronous SGD for Arbitrarily Heterogeneous Data [22.917944307972434]
We consider the distributed learning problem with data across multiple workers under the orchestration of a central server.
We introduce the textitdual-delayed asynchronous SGD (DuDe-ASGD) algorithm designed to the adverse effects of data iterations.
DuDe-ASGD makes full use of stale gradients from all workers during asynchronous training, leading to two time lags in the model parameters and data samples utilized in the servers.
arXiv Detail & Related papers (2024-05-27T09:00:30Z) - Freya PAGE: First Optimal Time Complexity for Large-Scale Nonconvex Finite-Sum Optimization with Heterogeneous Asynchronous Computations [92.1840862558718]
In practical distributed systems, workers typically not homogeneous, and can have highly varying processing times.
We introduce a new parallel method Freya to handle arbitrarily slow computations.
We show that Freya offers significantly improved complexity guarantees compared to all previous methods.
arXiv Detail & Related papers (2024-05-24T13:33:30Z) - AsGrad: A Sharp Unified Analysis of Asynchronous-SGD Algorithms [45.90015262911875]
We analyze asynchronous-type algorithms for distributed SGD in the heterogeneous setting.
As a by-product of our analysis, we also demonstrate guarantees for gradient-type algorithms such as SGD with random tightness.
arXiv Detail & Related papers (2023-10-31T13:44:53Z) - Towards Understanding the Generalizability of Delayed Stochastic
Gradient Descent [63.43247232708004]
A gradient descent performed in an asynchronous manner plays a crucial role in training large-scale machine learning models.
Existing generalization error bounds are rather pessimistic and cannot reveal the correlation between asynchronous delays and generalization.
Our theoretical results indicate that asynchronous delays reduce the generalization error of the delayed SGD algorithm.
arXiv Detail & Related papers (2023-08-18T10:00:27Z) - Asynchronous SGD Beats Minibatch SGD Under Arbitrary Delays [8.46491234455848]
We prove much better guarantees for the same asynchronous gradient regardless of the delays in steps, depending instead just on the number of steps.
For our analysis, we introduce a novel based on "virtual steps" and delay iterations, which allow us to derive state-of-the-art guarantees for both convex non-adaptive gradients.
arXiv Detail & Related papers (2022-06-15T16:28:37Z) - Distributed stochastic optimization with large delays [59.95552973784946]
One of the most widely used methods for solving large-scale optimization problems is distributed asynchronous gradient descent (DASGD)
We show that DASGD converges to a global optimal implementation model under same delay assumptions.
arXiv Detail & Related papers (2021-07-06T21:59:49Z) - Slow and Stale Gradients Can Win the Race [39.750046808758526]
Distributed Gradient Descent (SGD) when run in a synchronous manner, suffers from delays in runtime as it waits for the slowest workers (stragglers)
Asynchronous methods can alleviate stragglers, but cause gradient staleness that can adversely affect the convergence error.
We present a novel theoretical characterization of the speedup offered by asynchronous methods by analyzing the trade-off between the error in the trained model and the actual training runtime.
arXiv Detail & Related papers (2020-03-23T23:27:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.