Brain-Adapter: Enhancing Neurological Disorder Analysis with Adapter-Tuning Multimodal Large Language Models
- URL: http://arxiv.org/abs/2501.16282v1
- Date: Mon, 27 Jan 2025 18:20:49 GMT
- Title: Brain-Adapter: Enhancing Neurological Disorder Analysis with Adapter-Tuning Multimodal Large Language Models
- Authors: Jing Zhang, Xiaowei Yu, Yanjun Lyu, Lu Zhang, Tong Chen, Chao Cao, Yan Zhuang, Minheng Chen, Tianming Liu, Dajiang Zhu,
- Abstract summary: This paper proposes Brain-Adapter, a novel approach that incorporates an extra bottleneck layer to learn new knowledge and instill it into the original pre-trained knowledge.
Experiments demonstrated the effectiveness of our approach in integrating multimodal data to significantly improve the diagnosis accuracy without high computational costs.
- Score: 30.044545011553172
- License:
- Abstract: Understanding brain disorders is crucial for accurate clinical diagnosis and treatment. Recent advances in Multimodal Large Language Models (MLLMs) offer a promising approach to interpreting medical images with the support of text descriptions. However, previous research has primarily focused on 2D medical images, leaving richer spatial information of 3D images under-explored, and single-modality-based methods are limited by overlooking the critical clinical information contained in other modalities. To address this issue, this paper proposes Brain-Adapter, a novel approach that incorporates an extra bottleneck layer to learn new knowledge and instill it into the original pre-trained knowledge. The major idea is to incorporate a lightweight bottleneck layer to train fewer parameters while capturing essential information and utilize a Contrastive Language-Image Pre-training (CLIP) strategy to align multimodal data within a unified representation space. Extensive experiments demonstrated the effectiveness of our approach in integrating multimodal data to significantly improve the diagnosis accuracy without high computational costs, highlighting the potential to enhance real-world diagnostic workflows.
Related papers
- Scaling Large Vision-Language Models for Enhanced Multimodal Comprehension In Biomedical Image Analysis [0.1984949535188529]
Vision language models (VLMs) address this by incorporating a pretrained vision backbone for processing images and a cross-modal projector.
We developed intelligent assistants finetuned from LLaVA models to enhance multimodal understanding in low-dose radiation therapy.
arXiv Detail & Related papers (2025-01-26T02:48:01Z) - LLM4Brain: Training a Large Language Model for Brain Video Understanding [9.294352205183726]
We introduce an LLM-based approach for reconstructing visual-semantic information from fMRI signals elicited by video stimuli.
We employ fine-tuning techniques on an fMRI encoder equipped with adaptors to transform brain responses into latent representations aligned with the video stimuli.
In particular, we integrate self-supervised domain adaptation methods to enhance the alignment between visual-semantic information and brain responses.
arXiv Detail & Related papers (2024-09-26T15:57:08Z) - Integrating Medical Imaging and Clinical Reports Using Multimodal Deep Learning for Advanced Disease Analysis [3.8758525789991896]
An innovative multi-modal deep learning model is proposed to deeply integrate heterogeneous information from medical images and clinical reports.
For medical images, convolutional neural networks were used to extract high-dimensional features and capture key visual information.
For clinical report text, a two-way long and short-term memory network combined with an attention mechanism is used for deep semantic understanding.
arXiv Detail & Related papers (2024-05-23T02:22:10Z) - MedFLIP: Medical Vision-and-Language Self-supervised Fast Pre-Training with Masked Autoencoder [26.830574964308962]
We introduce MedFLIP, a Fast Language-Image Pre-training method for Medical analysis.
We explore MAEs for zero-shot learning with crossed domains, which enhances the model's ability to learn from limited data.
Lastly, we validate using language will improve the zero-shot performance for the medical image analysis.
arXiv Detail & Related papers (2024-03-07T16:11:43Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Multi-modal Graph Neural Network for Early Diagnosis of Alzheimer's
Disease from sMRI and PET Scans [11.420077093805382]
We propose to use graph neural networks (GNN) that are designed to deal with problems in non-Euclidean domains.
In this study, we demonstrate how brain networks can be created from sMRI or PET images.
We then present a multi-modal GNN framework where each modality has its own branch of GNN and a technique is proposed to combine the multi-modal data.
arXiv Detail & Related papers (2023-07-31T02:04:05Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Align, Reason and Learn: Enhancing Medical Vision-and-Language
Pre-training with Knowledge [68.90835997085557]
We propose a systematic and effective approach to enhance structured medical knowledge from three perspectives.
First, we align the representations of the vision encoder and the language encoder through knowledge.
Second, we inject knowledge into the multi-modal fusion model to enable the model to perform reasoning using knowledge as the supplementation of the input image and text.
Third, we guide the model to put emphasis on the most critical information in images and texts by designing knowledge-induced pretext tasks.
arXiv Detail & Related papers (2022-09-15T08:00:01Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.