Developing Enhanced Conversational Agents for Social Virtual Worlds
- URL: http://arxiv.org/abs/2501.16341v1
- Date: Tue, 14 Jan 2025 11:15:16 GMT
- Title: Developing Enhanced Conversational Agents for Social Virtual Worlds
- Authors: D. Griol, A. Sanchis, J. M. Molina, Z. Callejas,
- Abstract summary: The proposal combines different techniques related to Artificial Intelligence, Natural Language Processing, Affective Computing, and User Modeling.
Our proposal has been evaluated with the successful development of an embodied conversational agent which has been placed in the Second Life social virtual world.
The experimental results show that the agents conversational behavior adapts successfully to the specific characteristics of users interacting in such environments.
- Score: 0.0
- License:
- Abstract: In this paper, we present a methodology for the development of embodied conversational agents for social virtual worlds. The agents provide multimodal communication with their users in which speech interaction is included. Our proposal combines different techniques related to Artificial Intelligence, Natural Language Processing, Affective Computing, and User Modeling. Firstly, the developed conversational agents. A statistical methodology has been developed to model the system conversational behavior, which is learned from an initial corpus and improved with the knowledge acquired from the successive interactions. In addition, the selection of the next system response is adapted considering information stored into users profiles and also the emotional contents detected in the users utterances. Our proposal has been evaluated with the successful development of an embodied conversational agent which has been placed in the Second Life social virtual world. The avatar includes the different models and interacts with the users who inhabit the virtual world in order to provide academic information. The experimental results show that the agents conversational behavior adapts successfully to the specific characteristics of users interacting in such environments.
Related papers
- Social Life Simulation for Non-Cognitive Skills Learning [7.730401608473805]
We introduce Simulife++, an interactive platform enabled by a large language model (LLM)
The system allows users to act as protagonists, creating stories with one or multiple AI-based characters in diverse social scenarios.
In particular, we expanded the Human-AI interaction to a Human-AI-AI collaboration by including a Sage Agent, who acts as a bystander.
arXiv Detail & Related papers (2024-05-01T01:45:50Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
"Agent AI" is a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data.
We envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
arXiv Detail & Related papers (2024-01-07T19:11:18Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
We propose AgentCF for simulating user-item interactions in recommender systems through agent-based collaborative filtering.
We creatively consider not only users but also items as agents, and develop a collaborative learning approach that optimize both kinds of agents together.
Overall, the optimized agents exhibit diverse interaction behaviors within our framework, including user-item, user-user, item-item, and collective interactions.
arXiv Detail & Related papers (2023-10-13T16:37:14Z) - SAPIEN: Affective Virtual Agents Powered by Large Language Models [2.423280064224919]
We introduce SAPIEN, a platform for high-fidelity virtual agents driven by large language models.
The platform allows users to customize their virtual agent's personality, background, and conversation premise.
After the virtual meeting, the user can choose to get the conversation analyzed and receive actionable feedback on their communication skills.
arXiv Detail & Related papers (2023-08-06T05:13:16Z) - Generative Agents: Interactive Simulacra of Human Behavior [86.1026716646289]
We introduce generative agents--computational software agents that simulate believable human behavior.
We describe an architecture that extends a large language model to store a complete record of the agent's experiences.
We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims.
arXiv Detail & Related papers (2023-04-07T01:55:19Z) - A Probabilistic Model Of Interaction Dynamics for Dyadic Face-to-Face
Settings [1.9544213396776275]
We develop a probabilistic model to capture the interaction dynamics between pairs of participants in a face-to-face setting.
This interaction encoding is then used to influence the generation when predicting one agent's future dynamics.
We show that our model successfully delineates between the modes, based on their interacting dynamics.
arXiv Detail & Related papers (2022-07-10T23:31:27Z) - Towards Socially Intelligent Agents with Mental State Transition and
Human Utility [97.01430011496576]
We propose to incorporate a mental state and utility model into dialogue agents.
The hybrid mental state extracts information from both the dialogue and event observations.
The utility model is a ranking model that learns human preferences from a crowd-sourced social commonsense dataset.
arXiv Detail & Related papers (2021-03-12T00:06:51Z) - Can You be More Social? Injecting Politeness and Positivity into
Task-Oriented Conversational Agents [60.27066549589362]
Social language used by human agents is associated with greater users' responsiveness and task completion.
The model uses a sequence-to-sequence deep learning architecture, extended with a social language understanding element.
Evaluation in terms of content preservation and social language level using both human judgment and automatic linguistic measures shows that the model can generate responses that enable agents to address users' issues in a more socially appropriate way.
arXiv Detail & Related papers (2020-12-29T08:22:48Z) - SPA: Verbal Interactions between Agents and Avatars in Shared Virtual
Environments using Propositional Planning [61.335252950832256]
Sense-Plan-Ask, or SPA, generates plausible verbal interactions between virtual human-like agents and user avatars in shared virtual environments.
We find that our algorithm creates a small runtime cost and enables agents to complete their goals more effectively than agents without the ability to leverage natural-language communication.
arXiv Detail & Related papers (2020-02-08T23:15:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.