Programming by Examples Meets Historical Linguistics: A Large Language Model Based Approach to Sound Law Induction
- URL: http://arxiv.org/abs/2501.16524v1
- Date: Mon, 27 Jan 2025 21:48:39 GMT
- Title: Programming by Examples Meets Historical Linguistics: A Large Language Model Based Approach to Sound Law Induction
- Authors: Atharva Naik, Darsh Agrawal, Hong Sng, Clayton Marr, Kexun Zhang, Nathaniel R Robinson, Kalvin Chang, Rebecca Byrnes, Aravind Mysore, Carolyn Rose, David R Mortensen,
- Abstract summary: We develop automated programs that convert reconstructed words in an ancestor language into their attested descendants.
We propose four kinds of synthetic data generation methods with varying amounts of inductive bias to investigate what leads to the best performance.
Based on the results we create a SOTA open-source model for SLI as PBE (+6% pass rate with a third of the parameters of the second-best LLM) and also highlight exciting future directions for PBE research.
- Score: 10.574091804590738
- License:
- Abstract: Historical linguists have long written "programs" that convert reconstructed words in an ancestor language into their attested descendants via ordered string rewrite functions (called sound laws) However, writing these programs is time-consuming, motivating the development of automated Sound Law Induction (SLI) which we formulate as Programming by Examples (PBE) with Large Language Models (LLMs) in this paper. While LLMs have been effective for code generation, recent work has shown that PBE is challenging but improvable by fine-tuning, especially with training data drawn from the same distribution as evaluation data. In this paper, we create a conceptual framework of what constitutes a "similar distribution" for SLI and propose four kinds of synthetic data generation methods with varying amounts of inductive bias to investigate what leads to the best performance. Based on the results we create a SOTA open-source model for SLI as PBE (+6% pass rate with a third of the parameters of the second-best LLM) and also highlight exciting future directions for PBE research.
Related papers
- Boosting the Capabilities of Compact Models in Low-Data Contexts with Large Language Models and Retrieval-Augmented Generation [2.9921619703037274]
We propose a retrieval augmented generation (RAG) framework backed by a large language model (LLM) to correct the output of a smaller model for the linguistic task of morphological glossing.
We leverage linguistic information to make up for the lack of data and trainable parameters, while allowing for inputs from written descriptive grammars interpreted and distilled through an LLM.
We show that a compact, RAG-supported model is highly effective in data-scarce settings, achieving a new state-of-the-art for this task and our target languages.
arXiv Detail & Related papers (2024-10-01T04:20:14Z) - Can Large Language Models Code Like a Linguist?: A Case Study in Low Resource Sound Law Induction [6.697759280660703]
We propose a language-agnostic solution that utilizes the programming ability of Large Language Models.
We generate Python sound law programs from sound change examples.
arXiv Detail & Related papers (2024-06-18T15:46:04Z) - Measuring Distributional Shifts in Text: The Advantage of Language
Model-Based Embeddings [11.393822909537796]
An essential part of monitoring machine learning models in production is measuring input and output data drift.
Recent advancements in large language models (LLMs) indicate their effectiveness in capturing semantic relationships.
We propose a clustering-based algorithm for measuring distributional shifts in text data by exploiting such embeddings.
arXiv Detail & Related papers (2023-12-04T20:46:48Z) - Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning [57.74233319453229]
Large language models (LLMs) have emerged as a groundbreaking technology and their unparalleled text generation capabilities have sparked interest in their application to the fundamental sentence representation learning task.
We propose MultiCSR, a multi-level contrastive sentence representation learning framework that decomposes the process of prompting LLMs to generate a corpus.
Our experiments reveal that MultiCSR enables a less advanced LLM to surpass the performance of ChatGPT, while applying it to ChatGPT achieves better state-of-the-art results.
arXiv Detail & Related papers (2023-10-17T03:21:43Z) - Large Language Model-Aware In-Context Learning for Code Generation [75.68709482932903]
Large language models (LLMs) have shown impressive in-context learning (ICL) ability in code generation.
We propose a novel learning-based selection approach named LAIL (LLM-Aware In-context Learning) for code generation.
arXiv Detail & Related papers (2023-10-15T06:12:58Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z) - Benchmarking Large Language Model Capabilities for Conditional
Generation [15.437176676169997]
We discuss how to adapt existing application-specific generation benchmarks to PLMs.
We show that PLMs differ in their applicability to different data regimes and their generalization to multiple languages.
arXiv Detail & Related papers (2023-06-29T08:59:40Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
We unify encoder and decoder-based models into a single prefix-LM.
For learning methods, we explore the claim of a "free lunch" hypothesis.
For data distributions, the effect of a mixture distribution and multi-epoch training of programming and natural languages on model performance is explored.
arXiv Detail & Related papers (2023-05-03T17:55:25Z) - An Overview on Language Models: Recent Developments and Outlook [32.528770408502396]
Conventional language models (CLMs) aim to predict the probability of linguistic sequences in a causal manner.
Pre-trained language models (PLMs) cover broader concepts and can be used in both causal sequential modeling and fine-tuning for downstream applications.
arXiv Detail & Related papers (2023-03-10T07:55:00Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
We propose LEVER, a simple approach to improve language-to-code generation by learning to verify the generated programs with their execution results.
Specifically, we train verifiers to determine whether a program sampled from the LLMs is correct or not based on the natural language input, the program itself and its execution results.
LEVER consistently improves over the base code LLMs(4.6% to 10.9% with code-davinci) and achieves new state-of-the-art results on all of them.
arXiv Detail & Related papers (2023-02-16T18:23:22Z) - Byte Pair Encoding is Suboptimal for Language Model Pretraining [49.30780227162387]
We analyze differences between unigram LM tokenization and byte-pair encoding (BPE)
We find that the unigram LM tokenization method matches or outperforms BPE across downstream tasks and two languages.
We hope that developers of future pretrained LMs will consider adopting the unigram LM method over the more prevalent BPE.
arXiv Detail & Related papers (2020-04-07T21:21:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.