PackDiT: Joint Human Motion and Text Generation via Mutual Prompting
- URL: http://arxiv.org/abs/2501.16551v1
- Date: Mon, 27 Jan 2025 22:51:45 GMT
- Title: PackDiT: Joint Human Motion and Text Generation via Mutual Prompting
- Authors: Zhongyu Jiang, Wenhao Chai, Zhuoran Zhou, Cheng-Yen Yang, Hsiang-Wei Huang, Jenq-Neng Hwang,
- Abstract summary: PackDiT is the first diffusion-based generative model capable of performing various tasks simultaneously.
We train PackDiT on the HumanML3D dataset, achieving state-of-the-art text-to-motion performance with an FID score of 0.106.
Our experiments further demonstrate that diffusion models are effective for motion-to-text generation, achieving performance comparable to that of autoregressive models.
- Score: 22.53146582495341
- License:
- Abstract: Human motion generation has advanced markedly with the advent of diffusion models. Most recent studies have concentrated on generating motion sequences based on text prompts, commonly referred to as text-to-motion generation. However, the bidirectional generation of motion and text, enabling tasks such as motion-to-text alongside text-to-motion, has been largely unexplored. This capability is essential for aligning diverse modalities and supports unconditional generation. In this paper, we introduce PackDiT, the first diffusion-based generative model capable of performing various tasks simultaneously, including motion generation, motion prediction, text generation, text-to-motion, motion-to-text, and joint motion-text generation. Our core innovation leverages mutual blocks to integrate multiple diffusion transformers (DiTs) across different modalities seamlessly. We train PackDiT on the HumanML3D dataset, achieving state-of-the-art text-to-motion performance with an FID score of 0.106, along with superior results in motion prediction and in-between tasks. Our experiments further demonstrate that diffusion models are effective for motion-to-text generation, achieving performance comparable to that of autoregressive models.
Related papers
- MoTe: Learning Motion-Text Diffusion Model for Multiple Generation Tasks [30.333659816277823]
We presenttextbfMoTe, a unified multi-modal model that could handle diverse tasks by learning the marginal, conditional, and joint distributions of motion and text simultaneously.
MoTe is composed of three components: Motion-Decoder (MED), Text-Decoder (TED), and Moti-on-Text Diffusion Model (MTDM)
arXiv Detail & Related papers (2024-11-29T15:48:24Z) - MotionCraft: Crafting Whole-Body Motion with Plug-and-Play Multimodal Controls [30.487510829107908]
We propose MotionCraft, a unified diffusion transformer that crafts whole-body motion with plug-and-play multimodal control.
Our framework employs a coarse-to-fine training strategy, starting with the first stage of text-to-motion semantic pre-training.
We introduce MC-Bench, the first available multimodal whole-body motion generation benchmark based on the unified SMPL-X format.
arXiv Detail & Related papers (2024-07-30T18:57:06Z) - Infinite Motion: Extended Motion Generation via Long Text Instructions [51.61117351997808]
"Infinite Motion" is a novel approach that leverages long text to extended motion generation.
Key innovation of our model is its ability to accept arbitrary lengths of text as input.
We incorporate the timestamp design for text which allows precise editing of local segments within the generated sequences.
arXiv Detail & Related papers (2024-07-11T12:33:56Z) - BOTH2Hands: Inferring 3D Hands from Both Text Prompts and Body Dynamics [50.88842027976421]
We propose BOTH57M, a novel multi-modal dataset for two-hand motion generation.
Our dataset includes accurate motion tracking for the human body and hands.
We also provide a strong baseline method, BOTH2Hands, for the novel task.
arXiv Detail & Related papers (2023-12-13T07:30:19Z) - DiverseMotion: Towards Diverse Human Motion Generation via Discrete
Diffusion [70.33381660741861]
We present DiverseMotion, a new approach for synthesizing high-quality human motions conditioned on textual descriptions.
We show that our DiverseMotion achieves the state-of-the-art motion quality and competitive motion diversity.
arXiv Detail & Related papers (2023-09-04T05:43:48Z) - Priority-Centric Human Motion Generation in Discrete Latent Space [59.401128190423535]
We introduce a Priority-Centric Motion Discrete Diffusion Model (M2DM) for text-to-motion generation.
M2DM incorporates a global self-attention mechanism and a regularization term to counteract code collapse.
We also present a motion discrete diffusion model that employs an innovative noise schedule, determined by the significance of each motion token.
arXiv Detail & Related papers (2023-08-28T10:40:16Z) - Make-An-Animation: Large-Scale Text-conditional 3D Human Motion
Generation [47.272177594990104]
We introduce Make-An-Animation, a text-conditioned human motion generation model.
It learns more diverse poses and prompts from large-scale image-text datasets.
It reaches state-of-the-art performance on text-to-motion generation.
arXiv Detail & Related papers (2023-05-16T17:58:43Z) - Text-driven Video Prediction [83.04845684117835]
We propose a new task called Text-driven Video Prediction (TVP)
Taking the first frame and text caption as inputs, this task aims to synthesize the following frames.
To investigate the capability of text in causal inference for progressive motion information, our TVP framework contains a Text Inference Module (TIM)
arXiv Detail & Related papers (2022-10-06T12:43:07Z) - TM2T: Stochastic and Tokenized Modeling for the Reciprocal Generation of
3D Human Motions and Texts [20.336481832461168]
Inspired by the strong ties between vision and language, our paper aims to explore the generation of 3D human full-body motions from texts.
We propose the use of motion token, a discrete and compact motion representation.
Our approach is flexible, could be used for both text2motion and motion2text tasks.
arXiv Detail & Related papers (2022-07-04T19:52:18Z) - TEMOS: Generating diverse human motions from textual descriptions [53.85978336198444]
We address the problem of generating diverse 3D human motions from textual descriptions.
We propose TEMOS, a text-conditioned generative model leveraging variational autoencoder (VAE) training with human motion data.
We show that TEMOS framework can produce both skeleton-based animations as in prior work, as well more expressive SMPL body motions.
arXiv Detail & Related papers (2022-04-25T14:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.