MCTS-SQL: An Effective Framework for Text-to-SQL with Monte Carlo Tree Search
- URL: http://arxiv.org/abs/2501.16607v1
- Date: Tue, 28 Jan 2025 00:52:23 GMT
- Title: MCTS-SQL: An Effective Framework for Text-to-SQL with Monte Carlo Tree Search
- Authors: Shuozhi Yuan, Liming Chen, Miaomiao Yuan, Jin Zhao, Haoran Peng, Wenming Guo,
- Abstract summary: We present a novel approach to converting natural language queries into database queries.
We use Monte Carlo Tree Search (MCTS) and a self-refinement mechanism to enhance accuracy and reliability.
Experimental results show that MCTS-IDER achieves state-of-the-art performance.
- Score: 3.521199751827158
- License:
- Abstract: Text-to-SQL is a fundamental and longstanding problem in the NLP area, aiming at converting natural language queries into SQL, enabling non-expert users to operate databases. Recent advances in LLM have greatly improved text-to-SQL performance. However, challenges persist, especially when dealing with complex user queries. Current approaches (e.g., COT prompting and multi-agent frameworks) rely on the ability of models to plan and generate SQL autonomously, but controlling performance remains difficult. In addition, LLMs are still prone to hallucinations. To alleviate these challenges, we designed a novel MCTS-SQL to guide SQL generation iteratively. The approach generates SQL queries through Monte Carlo Tree Search (MCTS) and a heuristic self-refinement mechanism are used to enhance accuracy and reliability. Key components include a schema selector for extracting relevant information and an MCTS-based generator for iterative query refinement. Experimental results from the SPIDER and BIRD benchmarks show that MCTS-SQL achieves state-of-the-art performance. Specifically, on the BIRD development dataset, MCTS-SQL achieves an Execution (EX) accuracy of 69.40% using GPT-4o as the base model and a significant improvement when dealing with challenging tasks, with an EX of 51.48%, which is 3.41% higher than the existing method.
Related papers
- STaR-SQL: Self-Taught Reasoner for Text-to-SQL [20.719165038519744]
"chain-of-thought" rationales have proven effective for improving the performance of large language models on complex reasoning tasks.
Applying such techniques to structured tasks, such as text-to-driven, remains largely unexplored.
In this paper, we introduce Self-Taughter for text-to-driven (STaR-), a novel approach that reframes query generation as a reasoning process.
Experimental results on the challenging Spider benchmark demonstrate that STaR- significantly improves text-to-performance, achieving an execution accuracy of 86.6%.
These findings underscore the potential of reasoning-augmented training for
arXiv Detail & Related papers (2025-02-19T08:58:44Z) - Enhancing LLM Fine-tuning for Text-to-SQLs by SQL Quality Measurement [1.392448435105643]
Text-to-s enables non-expert users to effortlessly retrieve desired information from databases using natural language queries.
Current state-of-the-art (SOTA) models like GPT4 and T5 have shown impressive performance on large-scale benchmarks like BIRD.
This paper proposed a novel approach that only needs SQL Quality to enhance Text-to-s performance.
arXiv Detail & Related papers (2024-10-02T17:21:51Z) - E-SQL: Direct Schema Linking via Question Enrichment in Text-to-SQL [1.187832944550453]
We introduce E-Seek, a novel pipeline specifically designed to address these challenges through direct schema linking and candidate predicate augmentation.
E-Seek enhances the natural language query by incorporating relevant database items (i.e., tables, columns, and values) and conditions directly into the question andsql construction plan, bridging the gap between the query and the database structure.
Comprehensive evaluations illustrate that E-Seek achieves competitive performance, particularly excelling in complex queries with a 66.29% execution accuracy on the test set.
arXiv Detail & Related papers (2024-09-25T09:02:48Z) - PTD-SQL: Partitioning and Targeted Drilling with LLMs in Text-to-SQL [54.304872649870575]
Large Language Models (LLMs) have emerged as powerful tools for Text-to-sense tasks.
In this study, we propose that employing query group partitioning allows LLMs to focus on learning the thought processes specific to a single problem type.
arXiv Detail & Related papers (2024-09-21T09:33:14Z) - SelECT-SQL: Self-correcting ensemble Chain-of-Thought for Text-to-SQL [3.422309388045878]
We introduce SelECT-, a novel in-context learning solution that uses an algorithmic combination of chain-of-thought, self-correction, and ensemble methods.
Specifically, when configured using GPT as the base LLM, SelECT-Turbo achieves 84.2% execution accuracy on the Spider leaderboard's development set.
arXiv Detail & Related papers (2024-09-16T05:40:18Z) - DAC: Decomposed Automation Correction for Text-to-SQL [51.48239006107272]
We introduce De Automation Correction (DAC), which corrects text-to-composed by decomposing entity linking and skeleton parsing.
We show that our method improves performance by $3.7%$ on average of Spider, Bird, and KaggleDBQA compared with the baseline method.
arXiv Detail & Related papers (2024-08-16T14:43:15Z) - MAC-SQL: A Multi-Agent Collaborative Framework for Text-to-SQL [47.120862170230566]
Recent Text-to-yourself methods usually suffer from significant performance degradation on "huge" databases.
We introduce MAC, a novel Text-to-yourself LLM-based multi-agent collaborative framework.
In our framework, we leverage GPT-4 as the strong backbone for all agent tasks to determine the upper bound of our framework.
We then fine-tune an open-sourced instruction-followed model,sql-Llama, by leveraging Code 7B, to accomplish all tasks as GPT-4 does.
arXiv Detail & Related papers (2023-12-18T14:40:20Z) - SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data [54.69489315952524]
"Prompt" is designed to improve the few-shot prompting capabilities of Text-to-LLMs.
"Prompt" outperforms previous approaches for in-context learning with few labeled data by a large margin.
We show that emphPrompt outperforms previous approaches for in-context learning with few labeled data by a large margin.
arXiv Detail & Related papers (2023-11-06T05:24:06Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z) - Weakly Supervised Text-to-SQL Parsing through Question Decomposition [53.22128541030441]
We take advantage of the recently proposed question meaning representation called QDMR.
Given questions, their QDMR structures (annotated by non-experts or automatically predicted) and the answers, we are able to automatically synthesizesql queries.
Our results show that the weakly supervised models perform competitively with those trained on NL- benchmark data.
arXiv Detail & Related papers (2021-12-12T20:02:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.