DFCon: Attention-Driven Supervised Contrastive Learning for Robust Deepfake Detection
- URL: http://arxiv.org/abs/2501.16704v1
- Date: Tue, 28 Jan 2025 04:46:50 GMT
- Title: DFCon: Attention-Driven Supervised Contrastive Learning for Robust Deepfake Detection
- Authors: MD Sadik Hossain Shanto, Mahir Labib Dihan, Souvik Ghosh, Riad Ahmed Anonto, Hafijul Hoque Chowdhury, Abir Muhtasim, Rakib Ahsan, MD Tanvir Hassan, MD Roqunuzzaman Sojib, Sheikh Azizul Hakim, M. Saifur Rahman,
- Abstract summary: This report presents our approach for the IEEE SP Cup 2025: Deepfake Face Detection in the Wild (DFWild-Cup)
Our methodology employs advanced backbone models, including MaxViT, CoAtNet, and EVA-02, fine-tuned using supervised contrastive loss to enhance feature separation.
The proposed system addresses the challenges of detecting deepfakes in real-world conditions and achieves a commendable accuracy of 95.83% on the validation dataset.
- Score: 0.3818645814949463
- License:
- Abstract: This report presents our approach for the IEEE SP Cup 2025: Deepfake Face Detection in the Wild (DFWild-Cup), focusing on detecting deepfakes across diverse datasets. Our methodology employs advanced backbone models, including MaxViT, CoAtNet, and EVA-02, fine-tuned using supervised contrastive loss to enhance feature separation. These models were specifically chosen for their complementary strengths. Integration of convolution layers and strided attention in MaxViT is well-suited for detecting local features. In contrast, hybrid use of convolution and attention mechanisms in CoAtNet effectively captures multi-scale features. Robust pretraining with masked image modeling of EVA-02 excels at capturing global features. After training, we freeze the parameters of these models and train the classification heads. Finally, a majority voting ensemble is employed to combine the predictions from these models, improving robustness and generalization to unseen scenarios. The proposed system addresses the challenges of detecting deepfakes in real-world conditions and achieves a commendable accuracy of 95.83% on the validation dataset.
Related papers
- Standing on the Shoulders of Giants: Reprogramming Visual-Language Model for General Deepfake Detection [16.21235742118949]
We propose a novel approach that repurposes a well-trained Vision-Language Models (VLMs) for general deepfake detection.
Motivated by the model reprogramming paradigm that manipulates the model prediction via input perturbations, our method can reprogram a pre-trained VLM model.
Experiments on several popular benchmark datasets demonstrate that the cross-dataset and cross-manipulation performances of deepfake detection can be significantly and consistently improved.
arXiv Detail & Related papers (2024-09-04T12:46:30Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
Model inversion attacks (MIAs) aim to reconstruct private images from a target classifier's training set, thereby raising privacy concerns in AI applications.
Previous GAN-based MIAs tend to suffer from inferior generative fidelity due to GAN's inherent flaws and biased optimization within latent space.
We propose Diffusion-based Model Inversion (Diff-MI) attacks to alleviate these issues.
arXiv Detail & Related papers (2024-07-16T06:38:49Z) - Generalized Face Forgery Detection via Adaptive Learning for Pre-trained Vision Transformer [54.32283739486781]
We present a textbfForgery-aware textbfAdaptive textbfVision textbfTransformer (FA-ViT) under the adaptive learning paradigm.
FA-ViT achieves 93.83% and 78.32% AUC scores on Celeb-DF and DFDC datasets in the cross-dataset evaluation.
arXiv Detail & Related papers (2023-09-20T06:51:11Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Confidence-Guided Data Augmentation for Deep Semi-Supervised Training [0.9968241071319184]
We propose a new data augmentation technique for semi-supervised learning settings that emphasizes learning from the most challenging regions of the feature space.
We perform experiments on two benchmark RGB datasets: CIFAR-100 and STL-10, and show that the proposed scheme improves classification performance in terms of accuracy and robustness.
arXiv Detail & Related papers (2022-09-16T21:23:19Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection [9.924083358178239]
We propose two variants of self-attention for contextual modeling in 3D object detection.
We first incorporate the pairwise self-attention mechanism into the current state-of-the-art BEV, voxel and point-based detectors.
Next, we propose a self-attention variant that samples a subset of the most representative features by learning deformations over randomly sampled locations.
arXiv Detail & Related papers (2021-01-07T18:30:32Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.