Bridging Neural Networks and Wireless Systems with MIMO-OFDM Semantic Communications
- URL: http://arxiv.org/abs/2501.16726v1
- Date: Tue, 28 Jan 2025 06:07:39 GMT
- Title: Bridging Neural Networks and Wireless Systems with MIMO-OFDM Semantic Communications
- Authors: Hanju Yoo, Dongha Choi, Yonghwi Kim, Yoontae Kim, Songkuk Kim, Chan-Byoung Chae, Robert W. Heath Jr,
- Abstract summary: This article focuses on the practical impacts of power amplifier (PA) nonlinearity and peak-to-average power ratio (PAPR) variations in a semantic communication system.
By addressing key limitations in existing designs, we provide actionable insights for advancing semantic communications in practical wireless environments.
- Score: 31.886033455714
- License:
- Abstract: Semantic communications aim to enhance transmission efficiency by jointly optimizing source coding, channel coding, and modulation. While prior research has demonstrated promising performance in simulations, real-world implementations often face significant challenges, including noise variability and nonlinear distortions, leading to performance gaps. This article investigates these challenges in a multiple-input multiple-output (MIMO) and orthogonal frequency division multiplexing (OFDM)-based semantic communication system, focusing on the practical impacts of power amplifier (PA) nonlinearity and peak-to-average power ratio (PAPR) variations. Our analysis identifies frequency selectivity of the actual channel as a critical factor in performance degradation and demonstrates that targeted mitigation strategies can enable semantic systems to approach theoretical performance. By addressing key limitations in existing designs, we provide actionable insights for advancing semantic communications in practical wireless environments. This work establishes a foundation for bridging the gap between theoretical models and real-world deployment, highlighting essential considerations for system design and optimization.
Related papers
- Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
Federated learning (FL) has been recognized as a viable solution for local-privacy-aware collaborative model training in wireless edge networks.
Most existing communication-efficient FL algorithms fail to reduce the significant inter-device variance.
We propose a novel communication-efficient FL algorithm, named FedQVR, which relies on a sophisticated variance-reduced scheme.
arXiv Detail & Related papers (2025-01-20T04:26:21Z) - Benchmarking Semantic Communications for Image Transmission Over MIMO Interference Channels [11.108614988357008]
We propose an interference-robust semantic communication (IRSC) scheme for general multiple-input multiple-output (MIMO) interference channels.
This scheme involves the development of transceivers based on neural networks (NNs), which integrate channel state information (CSI) either solely at the receiver or at both transmitter and receiver ends.
Experimental results demonstrate that the proposed IRSC scheme effectively learns to mitigate interference and outperforms baseline approaches.
arXiv Detail & Related papers (2024-04-10T11:40:22Z) - Digital versus Analog Transmissions for Federated Learning over Wireless
Networks [91.20926827568053]
We compare two effective communication schemes for wireless federated learning (FL) over resource-constrained networks.
We first examine both digital and analog transmission methods, together with a unified and fair comparison scheme under practical constraints.
A universal convergence analysis under various imperfections is established for FL performance evaluation in wireless networks.
arXiv Detail & Related papers (2024-02-15T01:50:46Z) - Adaptive Resource Allocation for Semantic Communication Networks [34.189531352110386]
This paper investigates the quality of service for semantic communication networks, including the semantic quantization efficiency (SQE) and transmission latency.
A problem maximizing the overall effective SC-QoS is formulated by jointly the transmit beamforming the base station, the bits semantic representation the subchannel assignment, and the semantic resource allocation.
Our design can effectively combat semantic noise and achieve superior performance in wireless communications compared to several benchmark schemes.
arXiv Detail & Related papers (2023-12-02T09:12:12Z) - Multiagent Reinforcement Learning with an Attention Mechanism for
Improving Energy Efficiency in LoRa Networks [52.96907334080273]
As the network scale increases, the energy efficiency of LoRa networks decreases sharply due to severe packet collisions.
We propose a transmission parameter allocation algorithm based on multiagent reinforcement learning (MALoRa)
Simulation results demonstrate that MALoRa significantly improves the system EE compared with baseline algorithms.
arXiv Detail & Related papers (2023-09-16T11:37:23Z) - Performance Analysis for Resource Constrained Decentralized Federated
Learning Over Wireless Networks [4.76281731053599]
Decentralized federated learning (DFL) can lead to significant communication overhead and reliance on a central server.
This study analyzes the performance of resource-constrained DFL using different communication schemes (digital and analog) over wireless networks to optimize communication efficiency.
arXiv Detail & Related papers (2023-08-12T07:56:48Z) - On Neural Architectures for Deep Learning-based Source Separation of
Co-Channel OFDM Signals [104.11663769306566]
We study the single-channel source separation problem involving frequency-division multiplexing (OFDM) signals.
We propose critical domain-informed modifications to the network parameterization, based on insights from OFDM structures.
arXiv Detail & Related papers (2023-03-11T16:29:13Z) - Multi-Agent Feedback Enabled Neural Networks for Intelligent
Communications [28.723523146324002]
In this paper, a novel multi-agent feedback enabled neural network (MAFENN) framework is proposed.
The MAFENN framework is theoretically formulated into a three-player Feedback Stackelberg game, and the game is proved to converge to the Feedback Stackelberg equilibrium.
To verify the MAFENN framework's feasibility in wireless communications, a multi-agent MAFENN based equalizer (MAFENN-E) is developed.
arXiv Detail & Related papers (2022-05-22T05:28:43Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Optimal Power Allocation for Rate Splitting Communications with Deep
Reinforcement Learning [61.91604046990993]
This letter introduces a novel framework to optimize the power allocation for users in a Rate Splitting Multiple Access network.
In the network, messages intended for users are split into different parts that are a single common part and respective private parts.
arXiv Detail & Related papers (2021-07-01T06:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.