Efficient Knowledge Distillation of SAM for Medical Image Segmentation
- URL: http://arxiv.org/abs/2501.16740v1
- Date: Tue, 28 Jan 2025 06:33:30 GMT
- Title: Efficient Knowledge Distillation of SAM for Medical Image Segmentation
- Authors: Kunal Dasharath Patil, Gowthamaan Palani, Ganapathy Krishnamurthi,
- Abstract summary: The Segment Anything Model (SAM) has set a new standard in interactive image segmentation, offering robust performance across various tasks.
We propose a novel knowledge distillation approach, KD SAM, which incorporates both encoder and decoder optimization through a combination of Mean Squared Error (MSE) and Perceptual Loss.
KD SAM effectively balances segmentation accuracy and computational efficiency, making it well-suited for real-time medical image segmentation applications in resource-constrained environments.
- Score: 0.04672991859386895
- License:
- Abstract: The Segment Anything Model (SAM) has set a new standard in interactive image segmentation, offering robust performance across various tasks. However, its significant computational requirements limit its deployment in real-time or resource-constrained environments. To address these challenges, we propose a novel knowledge distillation approach, KD SAM, which incorporates both encoder and decoder optimization through a combination of Mean Squared Error (MSE) and Perceptual Loss. This dual-loss framework captures structural and semantic features, enabling the student model to maintain high segmentation accuracy while reducing computational complexity. Based on the model evaluation on datasets, including Kvasir-SEG, ISIC 2017, Fetal Head Ultrasound, and Breast Ultrasound, we demonstrate that KD SAM achieves comparable or superior performance to the baseline models, with significantly fewer parameters. KD SAM effectively balances segmentation accuracy and computational efficiency, making it well-suited for real-time medical image segmentation applications in resource-constrained environments.
Related papers
- MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation [2.2585213273821716]
We introduce MedCLIP-SAMv2, a novel framework that integrates the CLIP and SAM models to perform segmentation on clinical scans.
Our approach includes fine-tuning the BiomedCLIP model with a new Decoupled Hard Negative Noise Contrastive Estimation (DHN-NCE) loss.
We also investigate using zero-shot segmentation labels within a weakly supervised paradigm to enhance segmentation quality further.
arXiv Detail & Related papers (2024-09-28T23:10:37Z) - Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance (UOIS) is crucial for autonomous robots operating in unstructured environments.
We propose UOIS-SAM, a data-efficient solution for the UOIS task.
UOIS-SAM integrates two key components: (i) a Heatmap-based Prompt Generator (HPG) to generate class-agnostic point prompts with precise foreground prediction, and (ii) a Hierarchical Discrimination Network (HDNet) that adapts SAM's mask decoder.
arXiv Detail & Related papers (2024-09-23T19:05:50Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
We propose the Cross-Scanning Mamba, named CS-Mamba, that employs a Spatial-Spectral SSM for global-local balanced context encoding.
Experiment results show that our CS-Mamba achieves state-of-the-art performance and the masked training method can better reconstruct smooth features to improve the visual quality.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - RobustSAM: Segment Anything Robustly on Degraded Images [19.767828436963317]
Segment Anything Model (SAM) has emerged as a transformative approach in image segmentation.
We propose the Robust Segment Anything Model (RobustSAM), which enhances SAM's performance on low-quality images.
Our method has been shown to effectively improve the performance of SAM-based downstream tasks such as single image dehazing and deblurring.
arXiv Detail & Related papers (2024-06-13T23:33:59Z) - Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning [6.44069573245889]
Brain tumor segmentation remains a significant challenge, particularly in the context of multi-modal magnetic resonance imaging (MRI)
We propose a novel strategy, which is called masked predicted pre-training, enabling robust feature learning from incomplete modality data.
In the fine-tuning phase, we utilize a knowledge distillation technique to align features between complete and missing modality data, simultaneously enhancing model robustness.
arXiv Detail & Related papers (2024-06-12T20:35:16Z) - WSI-SAM: Multi-resolution Segment Anything Model (SAM) for histopathology whole-slide images [8.179859593451285]
We present WSI-SAM, enhancing Segment Anything Model (SAM) with precise object segmentation capabilities for histopathology images.
To fully exploit pretrained knowledge while minimizing training overhead, we keep SAM frozen, introducing only minimal extra parameters.
Our model outperforms SAM by 4.1 and 2.5 percent points on a ductal carcinoma in situ (DCIS) segmentation tasks and breast cancer metastasis segmentation task.
arXiv Detail & Related papers (2024-03-14T10:30:43Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - SAMIHS: Adaptation of Segment Anything Model for Intracranial Hemorrhage
Segmentation [18.867207134086193]
Intracranial hemorrhage segmentation is a crucial and challenging step in stroke diagnosis and surgical planning.
We propose a SAM-based parameter-efficient fine-tuning method, called SAMIHS, for intracranial hemorrhage segmentation.
Our experimental results on two public datasets demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-11-14T14:23:09Z) - High Quality Segmentation for Ultra High-resolution Images [72.97958314291648]
We propose the Continuous Refinement Model for the ultra high-resolution segmentation refinement task.
Our proposed method is fast and effective on image segmentation refinement.
arXiv Detail & Related papers (2021-11-29T11:53:06Z) - Efficient Sharpness-aware Minimization for Improved Training of Neural
Networks [146.2011175973769]
This paper proposes Efficient Sharpness Aware Minimizer (M) which boosts SAM s efficiency at no cost to its generalization performance.
M includes two novel and efficient training strategies-StochasticWeight Perturbation and Sharpness-Sensitive Data Selection.
We show, via extensive experiments on the CIFAR and ImageNet datasets, that ESAM enhances the efficiency over SAM from requiring 100% extra computations to 40% vis-a-vis bases.
arXiv Detail & Related papers (2021-10-07T02:20:37Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
We propose a Fully Quantized image Super-Resolution framework (FQSR) to jointly optimize efficiency and accuracy.
We apply our quantization scheme on multiple mainstream super-resolution architectures, including SRResNet, SRGAN and EDSR.
Our FQSR using low bits quantization can achieve on par performance compared with the full-precision counterparts on five benchmark datasets.
arXiv Detail & Related papers (2020-11-29T03:53:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.