Overcoming Semantic Dilution in Transformer-Based Next Frame Prediction
- URL: http://arxiv.org/abs/2501.16753v1
- Date: Tue, 28 Jan 2025 07:12:29 GMT
- Title: Overcoming Semantic Dilution in Transformer-Based Next Frame Prediction
- Authors: Hy Nguyen, Srikanth Thudumu, Hung Du, Rajesh Vasa, Kon Mouzakis,
- Abstract summary: Next-frame prediction in videos is crucial for applications such as autonomous driving, object tracking, and motion prediction.
transformer-based next-frame prediction models face notable issues.
We propose a Semantic Concentration Multi-Head Self-Attention architecture, which effectively mitigates semantic dilution.
- Score: 0.9776703963093367
- License:
- Abstract: Next-frame prediction in videos is crucial for applications such as autonomous driving, object tracking, and motion prediction. The primary challenge in next-frame prediction lies in effectively capturing and processing both spatial and temporal information from previous video sequences. The transformer architecture, known for its prowess in handling sequence data, has made remarkable progress in this domain. However, transformer-based next-frame prediction models face notable issues: (a) The multi-head self-attention (MHSA) mechanism requires the input embedding to be split into $N$ chunks, where $N$ is the number of heads. Each segment captures only a fraction of the original embeddings information, which distorts the representation of the embedding in the latent space, resulting in a semantic dilution problem; (b) These models predict the embeddings of the next frames rather than the frames themselves, but the loss function based on the errors of the reconstructed frames, not the predicted embeddings -- this creates a discrepancy between the training objective and the model output. We propose a Semantic Concentration Multi-Head Self-Attention (SCMHSA) architecture, which effectively mitigates semantic dilution in transformer-based next-frame prediction. Additionally, we introduce a loss function that optimizes SCMHSA in the latent space, aligning the training objective more closely with the model output. Our method demonstrates superior performance compared to the original transformer-based predictors.
Related papers
- Fast and Efficient Transformer-based Method for Bird's Eye View Instance Prediction [0.8458547573621331]
This paper introduces a novel BEV instance prediction architecture based on a simplified paradigm.
The proposed system prioritizes speed, aiming at reduced parameter counts and inference times.
implementation of the proposed architecture is optimized for performance improvements in PyTorch version 2.1.
arXiv Detail & Related papers (2024-11-11T10:35:23Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - Layout Sequence Prediction From Noisy Mobile Modality [53.49649231056857]
Trajectory prediction plays a vital role in understanding pedestrian movement for applications such as autonomous driving and robotics.
Current trajectory prediction models depend on long, complete, and accurately observed sequences from visual modalities.
We propose LTrajDiff, a novel approach that treats objects obstructed or out of sight as equally important as those with fully visible trajectories.
arXiv Detail & Related papers (2023-10-09T20:32:49Z) - CoMusion: Towards Consistent Stochastic Human Motion Prediction via Motion Diffusion [6.862357145175449]
We propose CoMusion, a single-stage, end-to-end diffusion-based HMP framework.
CoMusion is inspired from the insight that a smooth future pose prediction performance improves spatial prediction performance.
Our method, facilitated by the Transformer-GCN module design and a proposed variance scheduler, predicts accurate, realistic, and consistent motions.
arXiv Detail & Related papers (2023-05-21T19:31:56Z) - STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Action Recognition [50.064502884594376]
We study the problem of human action recognition using motion capture (MoCap) sequences.
We propose a novel Spatial-Temporal Mesh Transformer (STMT) to directly model the mesh sequences.
The proposed method achieves state-of-the-art performance compared to skeleton-based and point-cloud-based models.
arXiv Detail & Related papers (2023-03-31T16:19:27Z) - STDepthFormer: Predicting Spatio-temporal Depth from Video with a
Self-supervised Transformer Model [0.0]
Self-supervised model simultaneously predicts a sequence of future frames from video-input with a spatial-temporal attention network is proposed.
The proposed model leverages prior scene knowledge such as object shape and texture similar to single-image depth inference methods.
It is implicitly capable of forecasting the motion of objects in the scene, rather than requiring complex models involving multi-object detection, segmentation and tracking.
arXiv Detail & Related papers (2023-03-02T12:22:51Z) - Making Reconstruction-based Method Great Again for Video Anomaly
Detection [64.19326819088563]
Anomaly detection in videos is a significant yet challenging problem.
Existing reconstruction-based methods rely on old-fashioned convolutional autoencoders.
We propose a new autoencoder model for enhanced consecutive frame reconstruction.
arXiv Detail & Related papers (2023-01-28T01:57:57Z) - Transformers predicting the future. Applying attention in next-frame and
time series forecasting [0.0]
Recurrent Neural Networks were, until recently, one of the best ways to capture the timely dependencies in sequences.
With the introduction of the Transformer, it has been proven that an architecture with only attention-mechanisms without any RNN can improve on the results in various sequence processing tasks.
arXiv Detail & Related papers (2021-08-18T16:17:29Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z) - RAIN: A Simple Approach for Robust and Accurate Image Classification
Networks [156.09526491791772]
It has been shown that the majority of existing adversarial defense methods achieve robustness at the cost of sacrificing prediction accuracy.
This paper proposes a novel preprocessing framework, which we term Robust and Accurate Image classificatioN(RAIN)
RAIN applies randomization over inputs to break the ties between the model forward prediction path and the backward gradient path, thus improving the model robustness.
We conduct extensive experiments on the STL10 and ImageNet datasets to verify the effectiveness of RAIN against various types of adversarial attacks.
arXiv Detail & Related papers (2020-04-24T02:03:56Z) - Motion Segmentation using Frequency Domain Transformer Networks [29.998917158604694]
We propose a novel end-to-end learnable architecture that predicts the next frame by modeling foreground and background separately.
Our approach can outperform some widely used video prediction methods like Video Ladder Network and Predictive Gated Pyramids on synthetic data.
arXiv Detail & Related papers (2020-04-18T15:05:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.