Exploring the Role of Explicit Temporal Modeling in Multimodal Large Language Models for Video Understanding
- URL: http://arxiv.org/abs/2501.16786v1
- Date: Tue, 28 Jan 2025 08:30:58 GMT
- Title: Exploring the Role of Explicit Temporal Modeling in Multimodal Large Language Models for Video Understanding
- Authors: Yun Li, Zhe Liu, Yajing Kong, Guangrui Li, Jiyuan Zhang, Chao Bian, Feng Liu, Lina Yao, Zhenbang Sun,
- Abstract summary: Existing approaches adopt either implicit temporal modeling, relying solely on the decoder, or explicit temporal modeling, employing auxiliary temporal encoders.
We propose the explicit Temporal (STE) to enable flexible explicit temporal modeling with adjustable receptive temporal fields and token compression ratios.
Our findings emphasize the critical role of explicit temporal modeling, providing actionable insights to advance video MLLMs.
- Score: 23.477954901326978
- License:
- Abstract: Applying Multimodal Large Language Models (MLLMs) to video understanding presents significant challenges due to the need to model temporal relations across frames. Existing approaches adopt either implicit temporal modeling, relying solely on the LLM decoder, or explicit temporal modeling, employing auxiliary temporal encoders. To investigate this debate between the two paradigms, we propose the Stackable Temporal Encoder (STE). STE enables flexible explicit temporal modeling with adjustable temporal receptive fields and token compression ratios. Using STE, we systematically compare implicit and explicit temporal modeling across dimensions such as overall performance, token compression effectiveness, and temporal-specific understanding. We also explore STE's design considerations and broader impacts as a plug-in module and in image modalities. Our findings emphasize the critical role of explicit temporal modeling, providing actionable insights to advance video MLLMs.
Related papers
- Learning Free Token Reduction for Multi-Modal LLM [3.4026156483879517]
Vision-Language Models (VLMs) have achieved remarkable success across a range of multimodal tasks.
However, their practical deployment is often constrained by high computational costs and prolonged inference times.
We propose a token compression paradigm that operates on both spatial and temporal dimensions.
arXiv Detail & Related papers (2025-01-29T02:52:32Z) - Temporal Contrastive Learning for Video Temporal Reasoning in Large Vision-Language Models [44.99833362998488]
Temporal Semantic Alignment via Dynamic Prompting (TSADP) is a novel framework that enhances temporal reasoning capabilities.
We evaluate TSADP on the VidSitu dataset, augmented with enriched temporal annotations.
Our analysis highlights the robustness, efficiency, and practical utility of TSADP, making it a step forward in the field of video-language understanding.
arXiv Detail & Related papers (2024-12-16T02:37:58Z) - Bridging Vision and Language: Modeling Causality and Temporality in Video Narratives [0.0]
We propose an enhanced framework that integrates a Causal-Temporal Reasoning Module into state-of-the-art LVLMs.
CTRM comprises two key components: the Causal Dynamics (CDE) and the Temporal Learner (TRL)
We design a multi-stage learning strategy to optimize the model, combining pre-training on large-scale video-text datasets.
arXiv Detail & Related papers (2024-12-14T07:28:38Z) - Multimodal Latent Language Modeling with Next-Token Diffusion [111.93906046452125]
Multimodal generative models require a unified approach to handle both discrete data (e.g., text and code) and continuous data (e.g., image, audio, video)
We propose Latent Language Modeling (LatentLM), which seamlessly integrates continuous and discrete data using causal Transformers.
arXiv Detail & Related papers (2024-12-11T18:57:32Z) - Leaping Into Memories: Space-Time Deep Feature Synthesis [93.10032043225362]
We propose LEAPS, an architecture-independent method for synthesizing videos from internal models.
We quantitatively and qualitatively evaluate the applicability of LEAPS by inverting a range of architectures convolutional attention-based on Kinetics-400.
arXiv Detail & Related papers (2023-03-17T12:55:22Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - Revisiting Temporal Modeling for CLIP-based Image-to-Video Knowledge
Transferring [82.84513669453744]
Image-text pretrained models, e.g., CLIP, have shown impressive general multi-modal knowledge learned from large-scale image-text data pairs.
We revisit temporal modeling in the context of image-to-video knowledge transferring.
We present a simple and effective temporal modeling mechanism extending CLIP model to diverse video tasks.
arXiv Detail & Related papers (2023-01-26T14:12:02Z) - Learning Fine-Grained Visual Understanding for Video Question Answering
via Decoupling Spatial-Temporal Modeling [28.530765643908083]
We decouple spatial-temporal modeling and integrate an image- and a video-language to learn fine-grained visual understanding.
We propose a novel pre-training objective, Temporal Referring Modeling, which requires the model to identify temporal positions of events in video sequences.
Our model outperforms previous work pre-trained on orders of magnitude larger datasets.
arXiv Detail & Related papers (2022-10-08T07:03:31Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
We first propose a new approach to quantify the temporal relationships between frames captured by CNN-based action models.
We then conduct comprehensive experiments and in-depth analysis to provide a better understanding of how temporal modeling is affected.
arXiv Detail & Related papers (2022-04-25T19:06:48Z) - TCGL: Temporal Contrastive Graph for Self-supervised Video
Representation Learning [79.77010271213695]
We propose a novel video self-supervised learning framework named Temporal Contrastive Graph Learning (TCGL)
Our TCGL integrates the prior knowledge about the frame and snippet orders into graph structures, i.e., the intra-/inter- snippet Temporal Contrastive Graphs (TCG)
To generate supervisory signals for unlabeled videos, we introduce an Adaptive Snippet Order Prediction (ASOP) module.
arXiv Detail & Related papers (2021-12-07T09:27:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.