Online-BLS: An Accurate and Efficient Online Broad Learning System for Data Stream Classification
- URL: http://arxiv.org/abs/2501.16932v1
- Date: Tue, 28 Jan 2025 13:21:59 GMT
- Title: Online-BLS: An Accurate and Efficient Online Broad Learning System for Data Stream Classification
- Authors: Chunyu Lei, Guang-Ze Chen, C. L. Philip Chen, Tong Zhang,
- Abstract summary: We introduce an online broad learning system framework with closed-form solutions for each online update.
We design an effective weight estimation algorithm and an efficient online updating strategy.
Our framework is naturally extended to data stream scenarios with concept drift and exceeds state-of-the-art baselines.
- Score: 52.251569042852815
- License:
- Abstract: The state-of-the-art online learning models generally conduct a single online gradient descent when a new sample arrives and thus suffer from suboptimal model weights. To this end, we introduce an online broad learning system framework with closed-form solutions for each online update. Different from employing existing incremental broad learning algorithms for online learning tasks, which tend to incur degraded accuracy and expensive online update overhead, we design an effective weight estimation algorithm and an efficient online updating strategy to remedy the above two deficiencies, respectively. Specifically, an effective weight estimation algorithm is first developed by replacing notorious matrix inverse operations with Cholesky decomposition and forward-backward substitution to improve model accuracy. Second, we devise an efficient online updating strategy that dramatically reduces online update time. Theoretical analysis exhibits the splendid error bound and low time complexity of our model. The most popular test-then-training evaluation experiments on various real-world datasets prove its superiority and efficiency. Furthermore, our framework is naturally extended to data stream scenarios with concept drift and exceeds state-of-the-art baselines.
Related papers
- Towards An Online Incremental Approach to Predict Students Performance [0.8287206589886879]
We propose a memory-based online incremental learning approach for updating an online classifier.
Our approach achieves a notable improvement in model accuracy, with an enhancement of nearly 10% compared to the current state-of-the-art.
arXiv Detail & Related papers (2024-05-03T17:13:26Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
We study the problem of offline pre-training and online fine-tuning for reinforcement learning from high-dimensional observations.
Existing model-based offline RL methods are not suitable for offline-to-online fine-tuning in high-dimensional domains.
We propose an on-policy model-based method that can efficiently reuse prior data through model-based value expansion and policy regularization.
arXiv Detail & Related papers (2024-01-06T21:04:31Z) - Finetuning Offline World Models in the Real World [13.46766121896684]
Reinforcement Learning (RL) is notoriously data-inefficient, which makes training on a real robot difficult.
offline RL has been proposed as a framework for training RL policies on pre-existing datasets without any online interaction.
In this work, we consider the problem of pretraining a world model with offline data collected on a real robot, and then finetuning the model on online data collected by planning with the learned model.
arXiv Detail & Related papers (2023-10-24T17:46:12Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [65.57123249246358]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
We introduce an efficient optimization-based meta-learning technique for large-scale neural field training.
We show how gradient re-scaling at meta-test time allows the learning of extremely high-quality neural fields.
Our framework is model-agnostic, intuitive, straightforward to implement, and shows significant reconstruction improvements for a wide range of signals.
arXiv Detail & Related papers (2023-02-01T17:32:16Z) - Bilevel Online Deep Learning in Non-stationary Environment [4.565872584112864]
Bilevel Online Deep Learning (BODL) framework combines bilevel optimization strategy and online ensemble classifier.
When the concept drift is detected, our BODL algorithm can adaptively update the model parameters via bilevel optimization and then circumvent the large drift and encourage positive transfer.
arXiv Detail & Related papers (2022-01-25T11:05:51Z) - Recursive Least-Squares Estimator-Aided Online Learning for Visual
Tracking [58.14267480293575]
We propose a simple yet effective online learning approach for few-shot online adaptation without requiring offline training.
It allows an in-built memory retention mechanism for the model to remember the knowledge about the object seen before.
We evaluate our approach based on two networks in the online learning families for tracking, i.e., multi-layer perceptrons in RT-MDNet and convolutional neural networks in DiMP.
arXiv Detail & Related papers (2021-12-28T06:51:18Z) - Fast Class-wise Updating for Online Hashing [196.14748396106955]
This paper presents a novel supervised online hashing scheme, termed Fast Class-wise Updating for Online Hashing (FCOH)
A class-wise updating method is developed to decompose the binary code learning and alternatively renew the hash functions in a class-wise fashion, which well addresses the burden on large amounts of training batches.
To further achieve online efficiency, we propose a semi-relaxation optimization, which accelerates the online training by treating different binary constraints independently.
arXiv Detail & Related papers (2020-12-01T07:41:54Z) - Online Passive-Aggressive Total-Error-Rate Minimization [1.370633147306388]
We provide a new online learning algorithm which utilizes online passive-aggressive learning (PA) and total-error-rate minimization (TER) for binary classification.
Experimental results demonstrate that the proposed PATER algorithms achieves better performances in terms of efficiency and effectiveness than the existing state-of-the-art online learning algorithms in real-world data sets.
arXiv Detail & Related papers (2020-02-05T13:10:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.