The empirical median for estimating the common mean of heteroscedastic random variables
- URL: http://arxiv.org/abs/2501.16956v1
- Date: Tue, 28 Jan 2025 13:57:54 GMT
- Title: The empirical median for estimating the common mean of heteroscedastic random variables
- Authors: Sirine Louati,
- Abstract summary: We study the problem of mean estimation in the heteroscedastic setting.
We establish upper and lower bounds on its estimation error that are of the same order.
- Score: 0.0
- License:
- Abstract: We study the problem of mean estimation in the heteroscedastic setting. In particular, we consider symmetric random variables having the same location parameter and different and unknown scale parameters. Our goal is then to estimate their unknown common location parameter. It is an elementary topic but yet a not very well-studied one since we always make the assumption that the random variables are independent and identically distributed. In this paper, we study the median estimator and we establish upper and lower bounds on its estimation error that are of the same order and that generalize and improve recent results of Devroye et al. and Xia.
Related papers
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Transformer-based Parameter Estimation in Statistics [0.0]
We propose a transformer-based approach to parameter estimation.
It does not even require knowing the probability density function, which is needed by numerical methods.
It is shown that our approach achieves similar or better accuracy as measured by mean-square-errors.
arXiv Detail & Related papers (2024-02-28T04:30:41Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
We investigate prediction sets for regression scenarios when the response variable, denoted by $Y$, resides in a manifold, and the covariable, denoted by X, lies in Euclidean space.
We prove the almost sure convergence of the empirical version of these regions on the manifold to their population counterparts.
arXiv Detail & Related papers (2023-10-12T10:56:25Z) - Robust Statistical Comparison of Random Variables with Locally Varying
Scale of Measurement [0.562479170374811]
Spaces with locally varying scale of measurement, like multidimensional structures with differently scaled dimensions, are pretty common in statistics and machine learning.
We address this problem by considering an order based on (sets of) expectations of random variables mapping into such non-standard spaces.
This order contains dominance and expectation order as extreme cases when no, or respectively perfect, cardinal structure is given.
arXiv Detail & Related papers (2023-06-22T11:02:18Z) - Beyond Normal: On the Evaluation of Mutual Information Estimators [52.85079110699378]
We show how to construct a diverse family of distributions with known ground-truth mutual information.
We provide guidelines for practitioners on how to select appropriate estimator adapted to the difficulty of problem considered.
arXiv Detail & Related papers (2023-06-19T17:26:34Z) - Predicting Out-of-Domain Generalization with Neighborhood Invariance [59.05399533508682]
We propose a measure of a classifier's output invariance in a local transformation neighborhood.
Our measure is simple to calculate, does not depend on the test point's true label, and can be applied even in out-of-domain (OOD) settings.
In experiments on benchmarks in image classification, sentiment analysis, and natural language inference, we demonstrate a strong and robust correlation between our measure and actual OOD generalization.
arXiv Detail & Related papers (2022-07-05T14:55:16Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
Conditional local independence is an independence relation among continuous time processes.
No nonparametric test of conditional local independence has been available.
We propose such a nonparametric test based on double machine learning.
arXiv Detail & Related papers (2022-03-25T10:31:02Z) - Random Forest Weighted Local Fréchet Regression with Random Objects [18.128663071848923]
We propose a novel random forest weighted local Fr'echet regression paradigm.
Our first method uses these weights as the local average to solve the conditional Fr'echet mean.
Second method performs local linear Fr'echet regression, both significantly improving existing Fr'echet regression methods.
arXiv Detail & Related papers (2022-02-10T09:10:59Z) - Reducing the Variance of Variational Estimates of Mutual Information by
Limiting the Critic's Hypothesis Space to RKHS [0.0]
Mutual information (MI) is an information-theoretic measure of dependency between two random variables.
Recent methods realize parametric probability distributions or critic as a neural network to approximate unknown density ratios.
We argue that the high variance characteristic is due to the uncontrolled complexity of the critic's hypothesis space.
arXiv Detail & Related papers (2020-11-17T14:32:48Z) - Propose, Test, Release: Differentially private estimation with high
probability [9.25177374431812]
We introduce a new general version of the PTR mechanism that allows us to derive high probability error bounds for differentially private estimators.
Our algorithms provide the first statistical guarantees for differentially private estimation of the median and mean without any boundedness assumptions on the data.
arXiv Detail & Related papers (2020-02-19T01:29:05Z) - Estimating Gradients for Discrete Random Variables by Sampling without
Replacement [93.09326095997336]
We derive an unbiased estimator for expectations over discrete random variables based on sampling without replacement.
We show that our estimator can be derived as the Rao-Blackwellization of three different estimators.
arXiv Detail & Related papers (2020-02-14T14:15:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.